mp-375
print Print Back Back

Transcutaneous Electrical Nerve Stimulation (TENS)

Policy Number: MP-375

Latest Review Date: November 2020

Category:  DME                                                                    

Policy Grade: B

POLICY:

Transcutaneous electrical nerve stimulation (TENS) units, application of surface neurostimulator and related supplies (e.g. leads, batteries, electrodes, conductive garments, etc) used with TENS devices are considered not medically necessary for any indication, including but not limited to dysphagia.

For transcutaneous tibial nerve stimulation (e.g. ZIDA), please refer to Medical Policy 286- Posterior Tibial Nerve Stimulation for Voiding Dysfunction.

DESCRIPTION OF PROCEDURE OR SERVICE:

Transcutaneous electrical nerve stimulation (TENS) describes the application of electrical stimulation to the surface of the skin at the site of pain. TENS may be applied in a variety of settings (i.e., the patient’s home, a physicians’ office, or in an outpatient clinic).

TENS has been used to treat chronic intractable pain, post-surgical pain, and pain associated with active or post-trauma injury unresponsive to other standard pain therapies. It has been proposed that TENS may provide pain relief through release of endorphins in addition to potential blockade of local pain pathways. TENS has also been used to treat dementia by altering neurotransmitter activity and increasing brain activity that is thought to reduce neural degeneration and stimulate regenerative process. Percutaneous electrical nerve stimulation is similar to TENS, but uses micro-needles that penetrate the skin instead of surface electrodes. Interferential stimulation (MP #073) uses a modulated waveform for deeper tissue stimulation, and is believed to improve blood flow to the affected area.

KEY POINTS:

This policy was updated with a literature review through October 7, 2020.

Summary of Evidence:

For individuals who have chronic pain who receive TENS, the evidence includes numerous randomized controlled trials (RCTs) and systematic reviews. The relevant outcomes are symptoms, functional outcomes, quality of life, and medication use. The overall strength of the evidence is weak. The best evidence exists for the treatment of chronic, intractable pain. Available evidence indicates that TENS can improve chronic intractable pain in some patients, and there is support for its use in clinical guidelines by specialty societies. To best direct TENS toward patients who will benefit, a short-term trial of TENS is appropriate, with continuation only in patients who show an initial improvement. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have acute pain who receive TENS, the evidence includes RCTs and systematic reviews. The relevant outcomes are symptoms, functional outcomes, quality of life, and medication use. Overall, evidence for the use of TENS from high-quality trials remains inconclusive for most indications. A Cochrane review of TENS for acute pain (e.g., cervical laser treatment, venipuncture, screening flexible sigmoidoscopy, postpartum uterine contractions, and rib fractures) found some evidence that TENS reduces pain intensity over and above that seen with placebo, but the high risk of bias made definitive conclusions impossible. Systematic reviews have found that TENS may help reduce pain in patients with post-operative pain (postcaesarean and total knee arthroplasty), dysmenorrhea, and pain associated with labor and delivery. For low back pain, systematic reviews have found insufficient evidence to support or refute the use of TENS. RCTs have reported mixed results in the efficacy of TENS across various acute pain conditions.  The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements

European Headache Federation

The European Headache Federation (2013), citing concerns about an ineffective sham procedure for TENS in headache methodology studies and the overall limited level of evidence, recommend that there is insufficient evidence for the use of TENS in headache prophylaxis and to abort an acute headache.

Osteoarthritis Research Society International

Guidelines from the Osteoarthritis Research Society International (OARSI) 2014 recommend that TENS is not appropriate for the use of multiple-joint osteoarthritis and is of uncertain value in the treatment of knee-only osteoarthritis. Updated guidance (2019) on the non-surgical management of knee, hip, and polyarticular osteoarthritis does not address TENS nor include it in their patient-focused treatment recommendations.

National Comprehensive Cancer Network

National Comprehensive Cancer Network guidelines on adult cancer pain (v.1.2020) indicate that nonpharmacologic interventions, including TENS, may be considered in conjunction with pharmacologic interventions as needed (category 2A).

National Cancer Institute

National Cancer Institute’s Physician Data Query identifies TENS as a potential other nonpharmacological modality for pain control for postthoracotomy pain syndrome.

North American Spine Society

In 2020, the North American Spine Society clinical guidelines on the diagnosis and treatment of low back pain provided guidance on the effectiveness of different physical medicine and rehabilitation therapies. The guideline noted that there is conflicting evidence that TENS results in improvement in pain or function at short- to medium-term follow-up. The work group further recommended that randomized clinical trials with long-term follow-up are needed to evaluate the benefits of TENS compared to exercise/physical therapy or as adjunctive use to usual care for low back pain.

In 2011, the North American Spine Society clinical guidelines on the diagnosis and treatment of cervical radiculopathy from degenerative disorders discussed the role of ancillary treatments such as bracing, traction, electrical stimulation, acupuncture, and TENS in the treatment of cervical radiculopathy from degenerative disorders. A consensus statement from the Society recommended that ozone injections, cervical halter traction, and combinations of medications, physical therapy, injections, and traction have been associated with improvements in patient-reported pain in uncontrolled case series. Such modalities may be considered, recognizing that no improvement relative to the natural history of cervical radiculopathy has been demonstrated.

American Academy of Neurology

The American Academy of Neurology (2010) published an evidence-based review of the efficacy of TENS in the treatment of pain in neurologic disorders. The AAN concluded that TENS is not recommended for the treatment of chronic low back pain due to lack of proven efficacy (level A, established evidence from two Class I studies), and that TENS should be considered for the treatment of painful diabetic neuropathy (Level B, probably effective, based on 2 Class II studies).

American Society of Anesthesiologists et al

The practice guidelines from the American Society of Anesthesiologists and American Society of Regional Anesthesia and Pain Medicine (2010) recommended that TENS be used as part of a multimodal approach to management for patients with chronic back pain and may be used for other pain conditions (e.g., neck and phantom limb pain). The American Society of Anesthesiologists’ 1997 guidelines on chronic pain management recommended that an office or home trial of TENS should be considered as an early management option or as an adjunctive therapy because of its low complexity and low risk.

National Institute for Health and Care Excellence

The NICE (2016) guidance on low back pain indicated that, despite the long history of use of TENS for back pain, the quality of research studies is poor. This guidance recommended against TENS as a treatment.

The NICE (2014) guidance on osteoarthritis care and management in adults indicated that TENS be considered “as an adjunct to core treatments for pain relief.”

The NICE (2017) guidance on intrapartum care recommended against the use of TENS for “established labour.”

National Institute for Health and Clinical Excellence

The United Kingdom’s National Institute for Health and Clinical Excellence (NICE) 2009 guidance on low back pain states that despite the long history of use of TENS for back pain, the quality of research studies is poor. These guidelines have failed to recommend TENS as a treatment, not because of evidence that it does not work, but because there is no evidence that it is effective.

American Congress of Obstetricians and Gynecologists

The American Congress of Obstetricians and Gynecologists (ACOG) 2007 guidelines for women’s health care state that methods of neuro-stimulation, such as transcutaneous electrical nerve stimulation, acupuncture, and massage, are based on the gate theory of pain control. These treatments can be useful for pain control, particularly when the pain is severe. The guidelines recommend that since different methods of treatment work by way of different routes (e.g., relaxation techniques, transcutaneous electrical nerve stimulation, physical therapy, vocational rehabilitation, and biofeedback), the use of multiple treatment modalities in synergy should be considered.

The 2019 ACOG guidelines on labor and delivery found that TENS may “help women cope with labor more than directly affect pain scores.”

American College of Physicians

The American College of Physicians (2017) published guidelines on therapies for acute and low back pain. No recommendations for TENS were made; the panel concluded that “evidence was insufficient to determine the effectiveness” of TENS and that there was no long-range data.

European Federation of Neurological Societies

The European Federation of Neurological Societies (2007) published guidelines on neurostimulation for neuropathic pain. The task force did not make conclusive recommendations, with only approximately 200 patients with different diseases, based on studies using different parameters and comparators, and having variable results. The task force concluded that standard high-frequency TENS is possibly (level C) better than placebo and probably (level B) worse than acupuncture-like or any other kind of electrical stimulation.

U.S. Preventive Services Task Force Recommendations

Not applicable.

KEY WORDS:

Transcutaneous electrical nerve stimulation, TENS, Flex-IT/Flex-Gar, Cefaly (STX-med, Herstal Belgium), dysphagia, The VitalStim® Therapy System, Cefaly® Acute, Cefaly® Dual, ZIDA

APPROVED BY GOVERNING BODIES:

TENS devices consist of an electrical pulse generator, usually battery-operated, connected by wire to 2 or more electrodes, which are applied to the surface of the skin at the site of the pain. Since 1977, a large number of devices have received marketing clearance through the U.S. Food and Drug Administration (FDA) 510(k) process. Marketing clearance via the 510(k) process does not require data regarding clinical efficacy; these devices are considered substantially equivalent to predicate devices marketed in interstate commerce before May 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified and do not require approval of a premarket approval application.

In 2014 the FDA granted de novo 510(k) approval for marketing to Cefaly® (STX-med, Herstal, Belgium), which is a TENS device for the prophylactic treatment of migraine in patients 18 years of age or older. 

The Cefaly® Acute and Cefaly® Dual devices were cleared by the FDA through the 510(k) process for the acute treatment of migraine in patients in 18 years of age or older and for both the acute treatment and prophylaxis of migraines in adults, respectively, in 2017. Other TENS devices cleared by the FDA through the 510(k) process for the prophylactic treatment of migraine in patients include Allive (Nu Eyne Co) and HeadaTerm (EEspress).

BENEFIT APPLICATION:

Coverage is subject to member’s specific benefits. Group specific policy will supersede this policy when applicable.

ITS: Home Policy provisions apply

FEP contracts: Special benefit consideration may apply. Refer to member’s benefit plan.

CODING: 

CPT Codes:

97014 Application of a modality to 1 or more areas; electrical stimulation (unattended)
97032   Application of a modality to 1 or more areas; electrical stimulation (manual), each 15 minutes

                           

HCPCS Codes:

A4595 Electrical stimulator supplies, 2 leads per month (e.g., TENS, NMES)
A4630 Replacement batteries, medically necessary, transcutaneous electrical stimulator, owned by patient
E0720 Transcutaneous electrical nerve stimulation (TENS) device, 2 lead, localized stimulation
E0730 Transcutaneous electrical nerve stimulation (TENS) device, 4 or more leads, for multiple nerve stimulation
E0731  Form-fitting conductive garment for delivery of TENS or NMES (with conductive fibers separated from the patient’s skin by layers of fabric)

REFERENCES:

  1. Acog Committee on Practice Bulletins--Gynecology. ACOG Practice Bulletin No. 51. Chronic pelvic pain. Obstet Gynecol. Mar 2004;103(3):589-605.
  2. Ahmed S, Haddad C, Subramaniam S et al. The Effect of Electric Stimulation Techniques on Pain and Tenderness at the Myofascial Trigger Point: A Systemic Review. Pain Med, 2019 Jan 29.
  3. Ahmed S, Plazier M, Ost J et al. The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: a water PET and EEG imaging study.. BMC Neurol, 2018 Nov 14;18(1).
  4. Amatya B, Young J, Khan F. Non-pharmacological interventions for chronic pain in multiple sclerosis.. Cochrane Database Syst Rev, 2018 Dec 20;12:CD012622.
  5. American Congress of Obstetricians and Gynecologists (ACOG) Committee Opinion Number 766 on Approaches to Limit Intervention During Labor and Birth. February 2019. https://www.acog.org/Clinical-Guidance-and-Publications/Committee-Opinions/Committee-on-ObstetricPractice/Approaches-to-Limit-Intervention-During-Labor-and-Birth. Accessed October 7, 2020.
  6. American Congress of Obstetricians and Gynecologists (ACOG). ACOG Practice Bulletin No. 51. Chronic Pelvic Pain. Obstet Gynecol 2004; 103(3):589-605.
  7. Arik MI, Kiloatar H, Aslan B, et al. The effect of tens for pain relief in women with primary dysmenorrhea: A systematic review and meta-analysis. Explore (NY). Aug 29 2020: 2541.
  8. Báez Suárez A, Martín Castillo E, García Andújar J et al. Evaluation of the effectiveness of transcutaneous nerve stimulation during labor in breech presentation: a case series.. J. Matern. Fetal. Neonatal. Med., 2019 Jan 19;1-7:1-7.
  9. Binny J, Joshua Wong NL, Garga S et al. Transcutaneous electric nerve stimulation (TENS) for acute low back pain: systematic review.. Scand J Pain, 2019 Mar 9;19(2).
  10. Bjersa K, Andersson T. High frequency TENS as a complement for pain relief in postoperative transition from epidural to general analgesia after pancreatic resection. Complement Ther Clin Pract 2014; 20(1):5-10.
  11. Bjordal JM, Johnson MI, Ljunggreen AE. Transcutaneous electrical nerve stimulation (TENS) can reduce postoperative analgesic consumption. A meta-analysis with assessment of optimal treatment parameters for postoperative pain. Euro J Pain 2003; 7:181-88.
  12. Bjordal JM, Johnson MI, Lopes-Martins RA, et al. Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord 2007; 8:51.
  13. Blue Cross Blue Shield Association. Technology Evaluation Criteria (TEC) Assessment 1996; Tab 21.
  14. Blue Cross Blue Shield Association. Transcutaneous Electrical Nerve Stimulation (TENS). Medical Policy Reference Manual, July 2009.
  15. Boldt I, Eriks-Hoogland I, Brinkhof MW, et al. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst Rev. 2014; 11:CD009177.
  16. Bono CM, Ghiselli G, Gilbert TJ et al. North American Spine Society. An Evidence-based Clinical Guideline for the Diagnosis and Treatment of Cervical Radiculopathy from Degenerative Disorders. Spine J 2011; 11(1):64-72. www.spine.org/Documents/Cervical_Radiculopathy.pdf.
  17. Bronfort G, Nilsson N, Haas M et al. Non-invasive physical treatments for chronic/recurrent headache. Cochrane Database Syst Rev 2004; (3):CD001878.
  18. Brosseau L, Judd MG, Marchand S et al. Transcutaneous electrical nerve stimulation (TENS) for the treatment of rheumatoid arthritis in the hand. Cochrane Database Syst Rev 2003; (3):CD004377.
  19. Brosseau L, Yonge KA, Robinson V, et al. Transcutaneous electrical nerve stimulation.
  20. Brosseau LU, Pelland LU, Casimiro LY et al. Electrical stimulation for the treatment of rheumatoid arthritis. Cochrane Database Syst Rev 2002; (2):CD003687.
  21. Butera KA, George SZ, Borsa PA, et al. Prolonged Reduction in Shoulder Strength after Transcutaneous Electrical Nerve Stimulation Treatment of Exercise-Induced Acute Muscle Pain. Pain Pract. Mar 5 2018.
  22. Cameron M, Lonergan E and Lee H. Transcutaneous electrical nerve stimulation (TENS) for dementia. Cochrane Database Syst Rev 2003; (3):CD004032.
  23. Carroll D, Moore RA, McQuay HJ, et al. Transcutaneous electrical nerve stimulation (TENS) for chronic pain (Cochrane Database Syst Rev 2001; (3):CD003222.
  24. Centers for Medicare & Medicaid. National Coverage Determination (NCD) for Supplies Used in the Delivery of Transcutaneous Electrical Nerve Stimulation (TENS) and Neuromuscular Electrical Stimulation (NMES) (160.13). 1988; https://www.cms.gov/medicare-coveragedatabase/details/ncd- details.aspx?NCDId=151&ncdver=1&DocID=160.13&bc=gAAAABAAAAAAAA%3d%3d&. Accessed October 7, 2020.
  25. Centers for Medicare & Medicaid. National Coverage Determination (NCD) for Transcutaneous Electrical Nerve Stimulators (TENS) (280.13). 1995; https://www.cms.gov/medicare-coverage-database/details/ncd- details.aspx? NCDId=273&ncdver=1&DocID=280.13&bc=gAAAABAAAAAAAA%3d%3d&. Accessed October 7, 2020.
  26. Centers for Medicare and Medicaid. Decision Memo for Transcutaneous Electrical Nerve Stimulation for Chronic Low Back Pain (CAG- 00429N). 2012; https://www.cms.gov/medicare-coverage-database/details/nca-decision- memo.aspx? NCAId=256&NcaName=Transcutaneous+Electrical+Nerve+Stimulation+for+Chronic+Low+Back+P ain&TimeFrame=7&DocType=All&bc=AQAAIAAAIAAA&. Accessed October 7, 2020.
  27. Centers for Medicare and Medicaid. National Coverage Determination (NCD) for Transcutaneous Electrical Nerve Stimulation (TENS) for Acute Post-Operative Pain (10.2). 1995; https://www.cms.gov/medicare-coverage- database/details/ncd-details.aspx?ncdid=145&ver=1. Accessed October 7, 2020.
  28. Centers for Medicare and Medicaid. National Coverage Determination (NCD) for Assessing Patient's Suitability for Electrical Nerve Stimulation Therapy (160.7.1). 2006; https://www.cms.gov/medicare-coverage- database/details/ncd- details.aspx? TAId=4&MEDCACId=15&MCDId=10&CALId=97&NCDId=63&ncdver=2&CoverageSelection=Natio nal&ncd_id=10.1&ncd_version=1&basket=ncd%25253A10%25252E1%25253A1%25253AUse+of+Visual+Tests +Prior+to+and+General+Anesthesia+during+Cataract+Surgery&bc=gAAAABAAAAAAAA%3D%3D&. Accessed October 7, 2020.
  29. Chao AS, Chao A, Wang TH, et al. Pain relief by applying transcutaneous electrical nerve stimulation (TENS) on acupuncture points during the first stage of labor: a randomized double-blind placebo-controlled trial. Pain 2007; 127(3):214-20.
  30. Chen FC, Jin ZL, Wang DF. A retrospective study of transcutaneous electrical nerve stimulation for chronic pain following ankylosing spondylitis. Medicine (Baltimore). Jul 2018;97(27):e11265.
  31. Chen WL, Hsu WC, Lin YJ et al. Comparison of intra-articular hyaluronic acid injections with transcutaneous electric nerve stimulation for the management of knee osteoarthritis: a randomized controlled trial. Arch Phys Med Rehabil 2013; 94(8):1482-9.
  32. Cherian JJ, Harrison PE, Benjamin SA, et al. Do the effects of transcutaneous electrical nerve stimulation on knee osteoarthritis pain and function last? J Knee Surg. Aug 2016; 29(6):497-501.
  33. Chesterton LS, Lewis AM, Sim J et al. Transcutaneous electrical nerve stimulation as adjunct to primary care management for tennis elbow: pragmatic randomized controlled trial (TATE trial). BMJ 2013; 347:f5160.
  34. Chou R, Qaseem A, Snow V, et al. Diagnosis and treatment of low back pain: A joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med 2007; 147(7):478-91.
  35. Committee on Obstetric Practice. Committee Opinion No. 687: Approaches to limit intervention during labor and birth. Obstet Gynecol. Feb 2017;129(2):e20-e28.
  36. Cruccu G, Aziz TZ, Garcia-Larrea L, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol 2007; 14(9):952-70.
  37. Dailey DL, Rakel BA, Vance CG et al. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperal gesia while restoring central inhibition in primary fibromyalgia. Pain 2013; 154(11):2554-62.
  38. De Giorgi I, Castroflorio T, Sartoris B, et al. The use of conventional transcutaneous electrical nerve stimulation in chronic facial myalgia patients. Clin Oral Investig. Jan 2017; 21(1):275-280.
  39. DeSantana JM, Walsh DM, Rakel BA, et al. Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep 2008; 10(6):492-99.
  40. Deyo RA, Walsh NE, Martin DC, et al. A controlled trial of transcutaneous electrical nerve stimulation (TENS) and exercise for chronic low back pain. N Engl J Med 1990; 322:1627-34.
  41. Dowswell T, Bedwell C, Lavender T et al. Transcutaneous electrical nerve stimulation (TENS) for pain relief in labor. Cochrane Database Syst Rev 2009; (2):CD—7214.
  42. Dubinsky RM, Miyasaki J. Assessment: efficacy of transcutaneous electric nerve stimulation in the treatment of pain in neurologic disorders (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2010; 74(2):173-6.
  43. Ferreira AP, Costa DR, Oliveira AI, et al. Short-term transcutaneous electrical nerve stimulation reduces pain and improves the masticatory muscle activity in temporomandibular disorder patients: a randomized controlled trial. J Appl Oral Sci. Mar-Apr 2017; 25(2):112-120.
  44. Food and Drug Administration. De Novo Classification Request for Cefaly Device. 2012; http://www.accessdata.fda.gov/cdrh_docs/reviews/K122566.pdf. Accessed November 1, 2017.
  45. Forogh B, Aslanpour H, Fallah E et. al. Adding high-frequency transcutaneous eletrical nerve stimulation to the first phase of post anterior cruciate ligament reconstruction rehabilitation does not improve pain and function in young male athletes more than exercise alone: A randomized single-blind clinical trial. Disabil Rehabil, 2017 Nov 10; 41(5).
  46. Galli TT, Chiavegato LD, Liebano RE. Effects of TENS in living kidney donors submitted to open nephrectomy: a randomized placebo-controlled trial. Eur J Pain. Jan 2015; 19(1):67-76.
  47. Gibson W, Wand BM, Meads C et al. Transcutaneous electrical nerve stimulation (TENS) for chronic pain - an overview of Cochrane Reviews.. Cochrane Database Syst Rev, 2019 Apr 4;4:CD011890.
  48. Gossrau G, Wahner M, Kuschke M et al. Microcurrent transcutaneous electric nerve stimulation in painful diabetic neuropathy: a randomized placebo-controlled study. Pain Med 2011; 12(6):953-60.
  49. Hokenek NM, Erdogan MO, Hokenek UD, et al. Treatment of migraine attacks by transcutaneous electrical nerve stimulation in emergency department: A randomize controlled trial. Am J Emerg Med. Jan 15 2020.
  50. Hurlow A, Bennett MI, Robb KA et al. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults. Cochran Database Syst Rev 2012; 3:CD006276.
  51. Jamison RN, Wan L, Edwards RR et al. Outcome of a High-Frequency Transcutaneous Electrical Nerve Stimulator (hfTENS) Device for Low Back Pain: A Randomized Controlled Trial.. Pain Pract, 2019 Jan 13;19(5).
  52. Johnson M and Martinson M. Efficacy of electrical nerve stimulation for chronic musculoskeletal pain: a meta-analysis of randomized controlled trials. Pain 2007; 130(1-2):157-65.
  53. Johnson MI, Mulvey MR, Bagnall AM. Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Cochrane Database Syst Rev. Aug 18 2015; 8:CD007264.
  54. Johnson MI, Paley CA, Howe TE, et al. Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Syst Rev. 2015; 6:CD006142.
  55. Kayman-Kose S, Arioz DT, Toktas H et al. Transcutaneous electrical nerve stimulation (TENS) for pain control after vaginal delivery and cesarean section. J Matern Fetal Neonatal Med 2014.
  56. Keskin EA, Onur O, Keskin HL et al. Transcutaneous electrical nerve stimulation improves low back pain during pregnancy. Gynecol Obstet Invest 2012; 74(1):76-83.
  57. Khadilkar A, Milne S, Brosseau L, et al. Transcutaneous electrical nerve stimulation (TENS) for chronic low-back pain. Cochrane Database Syst Rev 2005; (3):CD003008.
  58. Khadilkar A, Odebiyi DO, Brosseau L et al. Transcutaneous electrical nerve stimulation (TENS) versus placebo for chronic low-back pain. Cochrane Database Syst Rev 2008; (4):CD003008.
  59. Kong X, Gozani SN. Effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation in chronic pain: a large-scale, observational study. J Pain Res. 2018;11:703-714.
  60. Kroeling P, Gross A, Goldsmith CH et al. Electrotherapy for neck pain. Cochrane Database Syst Rev 2009; (4):CD004251.
  61. Kroeling P, Gross A, Graham N et al. Electrotherapy for neck pain. Cochrane Database Syst Rev 2013; 8:CD004251.
  62. Lang T, Barker R, Steinlechner B, et al. TENS relieves acute posttraumatic hip pain during emergency transport. J Trauma 2007; 62(1):184-8.
  63. Laufer Y, Elboim-Gabyzon M. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair 2011; 25(9):799-809.
  64. Lauretti GR, Chubaci EF, Mattos AL. Efficacy of the use of two simultaneously TENS devices for fibromyalgia pain. Rheumatol Int 2013; 33(8):2117-22.
  65. Lison JF, Amer-Cuenca JJ, Piquer-Marti S, et al. Transcutaneous nerve stimulation for pain relief during office hysteroscopy: a randomized controlled trial. Obstet Gynecol. Feb 2017; 129(2):363-370.
  66. Machin D, Lewith GT, Wylson S. Pain measurement in randomized clinical trials: A comparison of two pain scales. Clin J Pain. 1988;4:161- 168.
  67. Magis D, Sava S, d'Elia TS et al. Safety and patients' satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly(R) device in headache treatment: a survey of 2,313 headache sufferers in the general population. J Headache Pain 2013; 14:95.
  68. Martelletti P, Jensen RH, Antal A et al. Neuromodulation of chronic headaches: position statement from the European Headache Federation. J Headache Pain 2013; 14(1):86.
  69. McAlindon TE, Bannuru RR, Sullivan MC et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 2014; 22(3):363-88.
  70. Milne S, Welch V, Brosseau L, et al. Transcutaneous electrical nerve stimulation (TENS) for chronic low back pain. Cochrane Database Syst Rev2001; (2): CD003008.
  71. Mulvey MR, Agnall AM, Johnson MI et al. Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Cochrane Database Syst Rev 2010; (5):CD007264.
  72. National Cancer Institute. Pain (PDQ®). 2014: www.cancer.gov/cancertopics/pdq/supportivecare/pain/HealthProfessional/AllPages.
  73. National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines™) Adult Cancer Pain. V2.2014. www.nccn.org/professionals/physician_gls/pdf/pain.pdf. Accessed October 7, 2020.
  74. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology: Adult cancer pain. Version 1.2020. https://www.nccn.org/professionals/physician_gls/pdf/pain.pdf. Accessed October 7, 2020.
  75. National Institute for Health and Care Excellence (NICE). Intrapartum care: Care of healthy women and their babies during childbirth [CP55]. 2007; http://guidance.nice.org.uk/CG55/Guidance/pdf/English. Accessed October 7, 2020.
  76. National Institute for Health and Care Excellence (NICE). Low back pain in adults: early management [CP88]. 2009; http://www.nice.org.uk/guidance/cg88. Accessed October 7, 2020.
  77. National Institute for Health and Care Excellence (NICE). Osteoarthritis: the care and management of osteoarthritis in adults [CG59]. 2008; http://guidance.nice.org.uk/CG59/Guidance/pdf/English. Accessed November 1, 2017.
  78. National Institute for Health and Clinical Excellence (NICE). Low Back Pain. Early Management of Persistent Non-specific Low Back Pain. Clinical Guidance 88. 2009.
  79. Ng SS, Hui-Chan CW. Does the use of TENS increase the effectiveness of exercise for improving walking after stroke? A randomized controlled clinical trial. Clin Rehabil 2009; 23(12):1093-103.
  80. Nnoaham KE, Kumbang J. Transcutaneous electrical nerve stimulation (TENS) for chronic pain. Cochrane Database Syst Rev 2008; (3):CD003222.
  81. Oosterhof J, De Boo TM, Oostendorp RA, et al. Outcome of transcutaneous electrical nerve stimulation in chronic pain: Short-term results of a double-blind, randomised, placebo-controlled trial. J Headache Pain 2006; 7(4):196-205.
  82. Oosterhof J, Samwel HJ, de Boo TM, et al. Predicting outcome of TENS in chronic pain: A prospective, randomized, placebo controlled trial. Pain. 2007 Jul 27. Pain. 2008 May; 136(1-2):11-20.
  83. Oosterhof J, Wilder-Smith OH, de Boo T et al. The long-term outcome of transcutaneous electrical nerve stimulation in the treatment for patients with chronic pain: a randomized, placebo-controlled trial. Pain Pract 2012: 12(7):513-22.
  84. Osiri M, Welch V, Brosseau L, et al. Transcutaneous electrical nerve stimulation for knee osteoarthritis (Cochrane Review). In: The Cochrane Library, 2002(4):CD002823.
  85. Oztas B, Iyigun E. The effects of two different electrical stimulation methods on the pain intensity of the patients who had undergone abdominal surgery with a midline incision: Randomized controlled clinical trial.. Contemp Nurse, 2019 Jun 7;55(2-3).
  86. Palmer S, Domaille M, Cramp F et al. Transcutaneous electrical nerve stimulation as an adjunct to education and exercise for knee osteoarthritis: a randomized controlled trial. Arthritis Care Res (Hoboken) 2014; 66(3):387-94.
  87. Platon B, Thorn SE, Mannheimer C, et al. Effects of high-frequency, high-intensity transcutaneous electrical nerve stimulation versus intravenous opioids for pain relief after hysteroscopy: a randomized controlled study. Obstet Gynecol Sci. Sep 2020; 63(5): 660-669.
  88. Practice Guidelines for Chronic Pain Management. An updated report by the American Society of Anesthesiologists Task Force on Chronic Pain Management and the American Society of Regional Anesthesia and Pain Medicine. Anesthesiology 2010; 112(4):810-33.
  89. Price CI, Pandyan AD. Electrical stimulation for preventing and treating post-stroke shoulder pain. Cochrane Database Syst Rev 2000; (4):CD001698.
  90. Proctor ML, Smith CA, Farquhar CM, et al. Transcutaneous electrical nerve stimulation and acupuncture for primary dysmenorrhoea (Cochrane Review). In: The Cochrane Library, 2002; (1):CD002123.
  91. Qaseem A, Wilt TJ, McLean RM, et al. Noninvasive treatments for acute, subacute, and chronic low back pain: a clinical practice guideline from the American College of Physicians. Ann Intern Med. Apr 04 2017;166(7):514- 530.
  92. Rakel B, Cooper N, Adams HJ, et al. A new transient sham TENS device allows for investigator blinding while delivering a true placebo treatment. J Pain 2010; 11(3):230-8.
  93. Rakel BA, Zimmerman MB, Geasland K, et al. Transcutaneous electrical nerve stimulation for the control of pain during rehabilitation after total knee arthroplasty: A randomized, blinded, placebo-controlled trial. Pain. Dec 2014; 155(12):2599-2611.
  94. Ramanathan D, Saleh A, Klika AK, et al. The use of transcutaneous electrical nerve stimulation after total knee arthroplasty: a prospective randomized controlled trial. Surg Technol Int. Jul 25 2017; 30:425-434.
  95. Robb KA, Bennett MI, Johnson MI et al. Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults. Cochrane Database Syst Rev 2008; (3):CD006276.
  96. Rutjes AW, Nuesch E, Sterchi R et al. Transcutaneous electrostimulation for osteoarthritis of the knee. Cochrane Database System Rev 2009; (4):CD002823.
  97. Sawant A, Dadurka K, Overend T, et al. Systematic review of efficacy of TENS for management of central pain in people with multiple sclerosis. Mult Scler Relat Disord. May 2015; 4(3):219-227.
  98. Schneider MP, Tellenbach M, Mordasini L et al. Refractory chronic pelvic pain syndrome in men: can transcutaneous electrical nerve stimulation help? BJU Int 2013; 112(2):E159-63.
  99. Schoenen J, Vandersmissen B, Jeangette S et al. Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial. Neurology 2013; 80(8):697-704.
  100. Silva MB, de Melo PP, de Olivera NM et al. Analgesic effect of transcutaneous electrical nerve stimulation after laparoscopic cholecystectomy. Am J Phys Med Rehabil 2012; 91(8):652-7.
  101. Simpson PM, Fouche PF, Thomas RE et al. Transcutaneous electrical nerve stimulation for relieving acute pain in the prehospital setting: a systematic review and meta-analysis of randomized-controlled trials. Eur J Emerg Med 2014; 21(1):10-7.
  102. Siqueira LTD, Ribeiro VV, Moreira PAM et al. Effects of transcutaneous electrical nervous stimulation (TENS) associated with vocal therapy on musculoskeletal pain of women with behavioral dysphonia: A randomized, placebo-controlled double-blind clinical trial.. J Commun Disord, 2019 Aug 6;82:105923.
  103. Swarm R, Abernethy AP, Anghelescu DL et al. Adult cancer pain.. J Natl Compr Canc Netw, 2010 Sep 30;8(9).
  104. Takla MKN. Low-frequency high-intensity versus medium-frequency low-intensity combined therapy in the management of active myofascial trigger points: A randomized controlled trial.. Physiother Res Int, 2018 Aug 11;23(4).
  105. The National Collaborating Centre for Women’s and Children’s Health and the National Institute for Health and Clinical Excellence. Intrapartum care of healthy women and their babies during childbirth. Clinical Guidance 55. 2008.
  106. Thuvarakan K, Zimmermann H, Mikkelsen MK, et al. Transcutaneous Electrical Nerve Stimulation As A Pain-Relieving Approach in Labor Pain: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neuromodulation. Aug 2020; 23(6): 732-746.
  107. Tokuda M, Tabira K, Masuda T, et al. Effect of modulated-frequency and modulated-intensity transcutaneous electrical nerve stimulation after abdominal surgery: a randomized controlled trial. Clin J Pain. Jul 2014; 30(7):565-570.
  108. Transcutaneous electrical nerve stimulation (TENS) in chronic pain, responders and non-responders? //clinicaltrials.gov/ct2/results?term=NCT00885859&Search=Search. Accessed September 2010.
  109. Tucker DL, Rockett M, Hasan M, et al. Does transcutaneous electrical nerve stimulation (TENS) alleviate the pain experienced during bone marrow sampling in addition to standard techniques? A randomized, double-blinded, controlled trial. J Clin Pathol. Jun 2015; 68(6):479-483.
  110. Tyson SF, Sadeghi-Demneh E, Nester CJ. The effects of transcutaneous electrical nerve stimulation on strength, proprioception, balance and mobility in people with stroke: a randomized controlled cross-over trial. Clin Rehabil 2013; 27(9):785-91.
  111. U.S. Food and Drug Administration. De Novo Classification Request for Cefaly Device. 2012. www.accessdata.fda.gov/cdrh_docs/reviews/K122566.pdf.
  112. Vance CG, Rakel BA, Blodgett NP et al. Effects of transcutaneous electrical nerve stimulation on pain, pain sensitivity, and function in people with knee osteoarthritis: a randomized controlled trial. Phys Ther 2012; 92(7):898-910.
  113. Walsh DM, Howe TE, Johnson MI et al. Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Syst Rev 2009; (2):CD006142.
  114. Wu LC, Weng PW, Chen CH, et al. Literature review and meta-analysis of transcutaneous electrical nerve stimulation in treating chronic back pain. Reg Anesth Pain Med. May 2018;43(4):425-433.
  115. Yesil H, Hepguler S, Dundar U et al. Does the Use of Electrotherapies Increase the Effectiveness of Neck Stabilization Exercises for Improving Pain, Disability, Mood, and Quality of Life in Chronic Neck Pain?: A Randomized, Controlled, Single-Blind Study.. Spine, 2018 Apr 14;43(20).
  116. Zhu Y, Feng Y, Peng L. Effect of transcutaneous electrical nerve stimulation for pain control after total knee arthroplasty: A systematic review and meta-analysis. J Rehabil Med. Nov 21 2017;49(9):700-704.

POLICY HISTORY:

Medial Policy Group, September 1999

Medical Policy Group, June 2003

Medial Policy Group, August 2008

Medical Policy Panel, July 2009

Medical Policy Group, July 2009 (2)

Medical Policy Administration Committee, August 2009

Available for comment August 10-September 23, 2009

Medical Policy Group, January 2010 (2)

Medical Policy Group, April 2010 (2)

Medical Policy Administration Committee, May 2010

Medical Policy Group, June 2010 (2)

Available for comment June 4 – July 19, 2010

Medical Policy Group, September 2010 (2)

Medical Policy Administration Committee, September 2010

Available for comment October 4 – November 19, 2010

Medical Policy Administration Committee, January 2011

Medical Policy Group, January 2012 (2): Added new Key Word

Medical Policy Panel, August 2012

Medical Policy Group, September 2012 (2):  Key Points and References updated

Medical Policy Panel, July 2013

Medical Policy Group, September 2013 (2): No change to policy statement.   Key Points and References updated. 

Medical Policy Panel, April 2014

Medical Policy Group, April 2014 (5): No change to policy statement. Key Points, Key Words, Governing Bodies, and References updated. 

Medical Policy Panel, April 2015

Medical Policy Group, April 2015 (6):  Updates to Key Points and References; no change to policy statement; removed policy statements prior to January 1, 2011.

Medical Policy Panel, November 2015

Medical Policy Group, November 2015 (6): Updates to Key Points and References; no changes to policy statement.

Medical Policy Group, October 2017 (6): Updates to policy statement: The VitalStim® Therapy System for dysphagia is not covered, Key Words updated.

Medical Policy Administration Committee, October 2017

Available for comment October 11 through November 24, 2017

Medical Policy Panel, November 2017

Medical Policy Group, January 2018 (6): Updates to Key Points, Practice Guidelines and References. Combined non-coverage indications in policy statement, no change to policy intent.

Medical Policy Group, December 2017: Annual Coding Update 2018.  Updated verbiage for revised CPT code 64550.

Medical Policy Panel, November 2018

Medical Policy Group, November 2018 (6): Updates to Key Points, Practice Guidelines and References.

Medical Policy Group, December 2018: 2019 Annual Coding Update. Moved CPT code from Current coding section to Previous coding.  Created Previous coding section to include code 64550.

Medical Policy Group, May 2019 (6): Updated coding to include 97014, 97032.

Medical Policy Panel, November 2019

Medical Policy Group, November 2019 (6): Updates to Description, Key Points, Governing Bodies, Practice Guidelines, and References. No change to Policy Statement.

Medical Policy Panel, November 2020

Medical Policy Group, November 2020 (6): Updates to Key Points, Governing Bodies, Practice Guidelines, Key Words (Cefaly® Acute, Cefaly® Dual) and References.

Medical Policy Group, August 2021 (6): Policy section updated to include reference for transcutaneous tibial nerve stimulation (e.g. ZIDA), referring to Medical Policy 286- Posterior Tibial Nerve Stimulation for Voiding Dysfunction. Key Words updated to include ZIDA.

This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member’s plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, pre-determinations, and pre-procedure review) in Blue Cross and Blue Shield’s administration of plan contracts.

The plan does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. The plan administers benefits based on the member’s contract and corporate medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

As a general rule, benefits are payable under health plans only in cases of medical necessity and only if services or supplies are not investigational, provided the customer group contracts have such coverage.

The following Association Technology Evaluation Criteria must be met for a service/supply to be considered for coverage:

1. The technology must have final approval from the appropriate government regulatory bodies;

2. The scientific evidence must permit conclusions concerning the effect of the technology on health outcomes;

3. The technology must improve the net health outcome;

4. The technology must be as beneficial as any established alternatives;

5. The improvement must be attainable outside the investigational setting.

 

Medical Necessity means that health care services (e.g., procedures, treatments, supplies, devices, equipment, facilities or drugs) that a physician, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury or disease or its symptoms, and that are:

1. In accordance with generally accepted standards of medical practice; and

2. Clinically appropriate in terms of type, frequency, extent, site and duration and considered effective for the patient’s illness, injury or disease; and

3. Not primarily for the convenience of the patient, physician or other health care provider; and

4. Not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient’s illness, injury or disease.