Asset Publisher


print Print Back Back

Quantitative Electroencephalography as a Diagnostic Aid for Attention-Deficit/Hyperactivity Disorder

Policy Number: MP-572

Latest Review Date: October 2023

Category: Medicine                                                               


Quantitative electroencephalographic-based assessment of the theta/beta ratio is considered investigational as a diagnostic aid for attention-deficit/hyperactivity disorder.


Patients with attention-deficit/hyperactivity disorder (ADHD) may have alterations in their brain wave patterns that can be measured by quantitative electroencephalography (EEG). A commercially available system, the Neuropsychiatric EEG-based ADHD Assessment Aid, measures the resting theta/beta ratio of the electroencephalogram. This technology is being evaluated to aid in the diagnosis of ADHD in adolescents and children for whom there is a clinical suspicion of ADHD.

Attention Deficit/Hyperactivity Disorder

Attention deficit/hyperactivity disorder (ADHD) is a common disorder in children, adolescents, and adults defined by pervasive symptoms of inattention and/or hyperactivity-impulsivity, which lead to impairment in at least two domains of the work, school, or home environments. Stimulant medications reduce symptoms associated with ADHD, although there are concerns about the potential for over diagnosis and over prescribing of medication.


Presently, ADHD is diagnosed clinically by assessing behavioral symptoms and impairment via interviews and standard questionnaires. Diagnosis can be challenging, as the core symptoms are non-specific. They may be present in other psychiatric disorders (e.g., learning disabilities, conduct disorders, or affective disorders) or result from environmental influences such as a lack of discipline.  In addition, ADHD is a heterogeneous disorder with multiple subtypes, and frequently co-exists with other psychiatric disorders.

There has been a substantial amount of research over the last several decades on whether EEG-derived brain wave patterns in patients with ADHD differ from those without ADHD. EEG patterns are typically categorized into four frequency ranges, delta (<4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-25 Hz). The largest focus of research on brain wave patterns in ADHD has been on whether there is increased theta wave activity and an increased theta/beta ratio in ADHD patients.

The NEBA® system is a specific quantitative EEG system (QEEG) that measures the resting theta/beta ratio of the EEG with an electrode located at the central midline position (referred to as position CZ in the international 10-20 EEG system). QEEG uses computer analysis with mathematical transformation from the time domain into the frequency domain (fast Fourier transform) to determine the total power at each frequency. Relative power of the waveform can then be calculated in relation to the total power of the four frequency ranges. The NEBA system uses proprietary cut offs to generate an estimate of the likelihood of ADHD based on the resting theta/beta ratio.

It is proposed that the NEBA® system can be used to confirm a clinical diagnosis or support further testing in children and adolescents with ADHD. The system is not intended to evaluate patients in whom the clinician’s diagnosis of ADHD is negative, and the system does not generate an interpretive report in this situation. It is also proposed that the clinician’s diagnostic impression plus the results generated by the NEBA® system may reduce the potential for over diagnosis of ADHD, and thereby reduce the risks of administering unnecessary pharmacologic therapy in the intended use population. In addition, because of research on EEG brain waves in ADHD, neuro-feedback has been developed as a potential treatment for ADHD. This treatment employs principles of biofeedback using EEG brain wave activity and attempts to alter the brain wave patterns in beneficial ways.


The most recent literature update was performed through August 29, 2023.

Summary of Evidence

For individuals suspected of having attention-deficit/hyperactivity disorder (ADHD) who received quantitative electroencephalography (EEG), the evidence includes a number of studies on brain wave patterns, particularly the theta/beta ratio. Relevant outcomes are symptoms, functional outcomes, and medication use. Numerous studies have evaluated brainwave patterns with standard EEG equipment, and a pivotal trial, submitted to the U.S. FDA, measured the theta/beta ratio with the Neuropsychiatric EEG-based ADHD Assessment Aid system. In the pivotal trial, both the specificity and positive predictive value of quantitative EEG were high. The reclassification analysis would suggest that a negative Neuropsychiatric EEG-based ADHD Assessment Aid might make ADHD less likely, although it is not clear from this study whether the consensus diagnosis was more accurate than the initial clinical diagnosis that included patient interview and parent rating scales. The larger body of evidence also raises questions about the utility of measuring the theta/beta ratio because it has not been a consistent finding across studies. Given the uncertainty of an increase in the theta/beta ratio in patients with ADHD, additional study is needed to determine whether a low theta/beta ratio can identify children and adolescents who are unlikely to have ADHD. Also, the effect of the test on patient outcomes would allow greater certainty regarding the usefulness of this test. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Practice Guidelines and Position Statements

American Association of Pediatrics

The 2019 American Association of Pediatrics’  practice guidelines for the diagnosis, evaluation, and treatment of ADHD by the American Association of Pediatrics (AAP) state that to make a diagnosis of ADHD, the primary care clinician should determine that Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, Text Revision ,criteria have been met (including documentation of impairment in more than one major setting), and information should be obtained primarily from reports from parents or guardians, teachers, and other school and mental health clinicians involved in the child’s care. The primary care clinician should also rule out any alternative cause (quality of evidence B/strong recommendation). Assessment by quantitative electroencephalography is not mentioned in these guidelines.

American Academy of Neurology

In 2016, the American Academy of Neurology released a technology report on quantitative electroencephalography (EEG) for ADHD. The main conclusion of the report is that “unknown whether a combination of standard clinical examination and EEG theta/beta power ratio increases diagnostic certainty of ADHD compared with clinical examination alone.”

U.S. Preventive Services Task Force Recommendations

Not applicable.


NEBA, Neuropsychiatric EEG-based assessment aid, Brain function test for ADHD, Lexicor QEEG system


In 2011, the U.S. Food and Drug Administration (FDA) approved a de novo 510k classification (class II, special controls, product code: NCG) for the generic device: Neuropsychiatric Interpretive Electroencephalograph Assessment Aid. According to the FDA documentation, a Neuropsychiatric Interpretive Electroencephalograph Assessment Aid is a device prescribed by a physician that uses a patient’s EEG to provide an interpretation of the patient’s neuropsychiatric condition. In addition to the general controls, approval of these devices is subject to a number of special controls, including the following:

  • Clinical performance testing must demonstrate the accuracy, precision, and reproducibility of the EEG-based interpretation, including any specified equivocal ones (cutoffs).
  • Clinical performance testing must demonstrate the ability of the device to function as an assessment aid for the medical condition for which the device is indicated. Performance measures must demonstrate device performance characteristics per the intended use in the intended use environment. Performance measurements must include sensitivity, specificity, positive predictive value and negative predictive value per the device intended use. Repeatability of measurement must be demonstrated using interclass correlation coefficients and illustrated by qualitative scatter plots.
  • The device design must include safeguards to prevent use of the device as a stand-alone diagnostic.
  • The labeling must bear all information required for the safe and effective use of the device.

In 2013, the Neuropsychiatric EEG-based Assessment Aid (NEBA ; NEBA Health previously Lexicor Medical Technology) for ADHD was granted a de novo 510(k) classification by the FDA (K112711). The device is indicated to measure the theta/beta ratio of the electroencephalogram at electrode CZ on patients 6 to 17 years of age, combined with a clinician’s evaluation, to aid in the diagnosis of ADHD. NEBA should only be used by a clinician as confirmatory support for a completed clinical evaluation or as support for the clinician’s decision to pursue further testing following clinical evaluation. The device is not intended as a stand-alone tool in the evaluation or diagnosis of ADHD.


Coverage is subject to member’s specific benefits.  Group-specific policy will supersede this policy when applicable.

ITS: Home Policy provisions apply.

FEP:  Special benefit consideration may apply.  Refer to member’s benefit plan.  


This testing would likely be reported with existing electroencephalography CPT codes. The clinician would report the appropriate code for electroencephalography (e.g., 95812-95813) and the code for digital analysis of electroencephalogram (95957) would be reported for the analysis.

CPT Codes:


Electroencephalogram (EEG) monitoring code range


Electroencephalogram (EEG) monitoring code range


Digital analysis of electroencephalogram (EEG) (e.g., for epileptic spike analysis)


  1. Adamou M, Fullen T, Jones SL. EEG for Diagnosis of Adult ADHD: A Systematic Review With Narrative Analysis. Front Psychiatry. 2020; 11: 871.
  2. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Quantitative Electroencephalography as a Diagnostic Aid for Attention-Deficit/Hyperactivity Disorder. TEC Assessments 2014; Volume 29, Tab 1.  
  3. Clarke AR, Barry RJ, Dupuy FE, et al. Behavioral differences between EEG-defined subgroups of children with Attention-Deficit/Hyperactivity Disorder. Clin Neurophysiol. Jul 2011; 122(7):1333-1341.
  4. Clarke AR, Barry RJ, Dupuy FE, et al. Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: A disorder of arousal? Int J Psychophysiol. Sept 2013. Sep 2013; 89(3):314-319.
  5. Food and Drug Administration. De novo classification request for Neuropsychiatric EEG-Based Assessment Aid for ADHD (NEBA) System (K112711). 2013; 
  6. Gloss D, Varma J, Nuwer M. Evidence-Based Practice Advisory: The utility of EEG theta/beta power ratio in the diagnosis of ADHD (DRAFT). 
  7. Gloss D, Varma JK, Pringsheim T, et al. Practice advisory: The utility of EEG theta/beta power ratio in ADHD diagnosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. Nov 29 2016; 87(22):2375-2379.
  8. Kim J, Lee Y, Han D, et al. The utility of quantitative electroencephalography and Integrated Visual and Auditory Continuous Performance Test as auxiliary tools for the Attention Deficit Hyperactivity Disorder diagnosis. Clin Neurophysiol. Mar 2015; 126(3):532-540.
  9. Liechti MD, Valko L, Muller UC, et al. Diagnostic value of resting electroencephalogram in attention-deficit/hyperactivity disorder across the lifespan. Brain Topogr. Jan 2013; 26(1):135-151.  
  10. Monastra VJ, Lubar JF, Linden M. The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: reliability and validity studies. Neuropsychology. Jan 2001; 15(1):136-144.  
  11. Ogrim G, Kropotov J, Hestad K. The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: sensitivity, specificity, and behavioral correlates. Psychiatry Res. Aug 15 2012; 198(3):482-488.
  12. Sangal RB, Sangal JM. Use of EEG beta-1 power and theta/beta ratio over Broca's area to confirm diagnosis of attention deficit/hyperactivity disorder in children. Clin EEG Neurosci. Jul 2015; 46(3):177-182.
  13. Snyder SM, Rugino TA, Hornig M, et al. Integration of an EEG biomarker with a clinician's ADHD evaluation. Brain Behav. Apr 2015; 5(4):e00330.
  14. Subcommittee on Attention-Deficit/Hyperactivity Disorder Steering Committee on Quality Improvement Management, Wolraich M, Brown L, et al. ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics. Nov 2011; 128(5):1007-1022.  
  15. U.S. Food and Drug Administration. De novo classification request for Neuropsychiatric EEG-Based Assessment Aid for ADHD (NEBA) System. 2013;
  16. van Dijk H, deBeus R, Kerson C, et al. Different Spectral Analysis Methods for the Theta/Beta Ratio Calculate Different Ratios But Do Not Distinguish ADHD from Controls. Appl Psychophysiol Biofeedback. Sep 2020; 45(3): 165-173.
  17. Wolraich ML, Hagan JF, Allan C, et al. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics. Oct 2019; 144(4).


Medical Policy Panel, October 2014

Medical Policy Group, October 2014 (5):  New policy, previously only listed on the Investigational Listing; remains investigational

Medical Policy Administration Committee, November 2014

Available for comment October 21 through December 4, 2014

Medical Policy Panel, October 2015

Medical Policy Group, October 2015 (6):  Updates to Key Points and References; no change to policy statement.

Medical Policy Panel, October 2017

Medical Policy Group, October 2017 (6): Updates to Description, Key Points, Practice Guidelines, Governing Bodies and Key Words.

Medical Policy Panel, October 2018

Medical Policy Group, November 2018 (3): Updates to Key Points, and References. No changes to policy statement or intent.

Medical Policy Panel, October 2019

Medical Policy Group, November 2019 (3): 2019 Updates to Key Points. No changes to policy statement or intent.

Medical Policy Group, December 2019 (3):  2020 Annual Coding Update.  Added CPT code range 95700-95726 to the Current coding section and revised code 95813 to state 61-119 minutes. This change is associated with the deletion of codes 95827, 95950, 95951, 95953, 95956 and the addition of 23 codes for EEG services.

Medical Policy Panel, October 2020

Medical Policy Group, November 2020 (3): 2020 Updates to Key Points, Approved by Governing Bodies, Practice Guidelines and Position Statements, and References. No changes to policy statement or intent.

Medical Policy Panel, October 2021

Medical Policy Group, October 2021 (3): 2021 Updates to Key Points and References. Policy statement updated to remove “not medically necessary,” no change in intent.

Medical Policy Group, October 2022 (3): 2022 Updates to Key Points. No changes to policy statement or intent.

Medical Policy Panel, October 2023

Medical Policy Group, October 2023 (6): Updates to Description, Key Points, Governing Bodies, Benefit Application and References.

This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member’s plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, pre-determinations, and pre-procedure review) in Blue Cross and Blue Shield’s administration of plan contracts.

The plan does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. The plan administers benefits based on the member’s contract and corporate medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

As a general rule, benefits are payable under health plans only in cases of medical necessity and only if services or supplies are not investigational, provided the customer group contracts have such coverage.

The following Association Technology Evaluation Criteria must be met for a service/supply to be considered for coverage:

1. The technology must have final approval from the appropriate government regulatory bodies;

2. The scientific evidence must permit conclusions concerning the effect of the technology on health outcomes;

3. The technology must improve the net health outcome;

4. The technology must be as beneficial as any established alternatives;

5. The improvement must be attainable outside the investigational setting.

Medical Necessity means that health care services (e.g., procedures, treatments, supplies, devices, equipment, facilities or drugs) that a physician, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury or disease or its symptoms, and that are:

1. In accordance with generally accepted standards of medical practice; and

2. Clinically appropriate in terms of type, frequency, extent, site and duration and considered effective for the patient’s illness, injury or disease; and

3. Not primarily for the convenience of the patient, physician or other health care provider; and

4. Not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient’s illness, injury or disease.