

Name of Blue Advantage Policy: Treatment of Benign Prostatic Hyperplasia

Policy #: 725

Latest Review Date: June 2022

Category: Medical

BACKGROUND:

Blue Advantage medical policy does not conflict with Local Coverage Determinations (LCDs), Local Medical Review Policies (LMRPs) or National Coverage Determinations (NCDs) or with coverage provisions in Medicare manuals, instructions or operational policy letters. In order to be covered by Blue Advantage the service shall be reasonable and necessary under Title XVIII of the Social Security Act, Section 1862(a)(1)(A). The service is considered reasonable and necessary if it is determined that the service is:

- 1. Safe and effective;
- 2. Not experimental or investigational*;
- 3. Appropriate, including duration and frequency that is considered appropriate for the service, in terms of whether it is:
 - Furnished in accordance with accepted standards of medical practice for the diagnosis or treatment of the patient's condition or to improve the function of a malformed body member;
 - Furnished in a setting appropriate to the patient's medical needs and condition;
 - *Ordered and furnished by qualified personnel;*
 - One that meets, but does not exceed, the patient's medical need; and
 - At least as beneficial as an existing and available medically appropriate alternative.

*Routine costs of qualifying clinical trial services with dates of service on or after September 19, 2000 which meet the requirements of the Clinical Trials NCD are considered reasonable and necessary by Medicare. Providers should bill **Original Medicare** for covered services that are related to **clinical trials** that meet Medicare requirements (Refer to Medicare National Coverage Determinations Manual, Chapter 1, Section 310 and Medicare Claims Processing Manual Chapter 32, Sections 69.0-69.11).

POLICY:

For Transurethral Waterjet Ablation of the Prostate, refer to L38549 and A58008

For Cryosurgery of Prostate, refer to NCD 230.9

Blue Advantage will treat the following treatments for benign prostatic hyperplasia as a **covered benefit** as a second line treatment when medication is ineffective or there is an immediate need for intervention:

- Holmium laser procedures of the prostate (HoLAP, HoLEP, HoLRP)
- Laser Transurethral Enucleation of the Prostate (TUEP)
- Laser Transurethral Vaporization of the Prostate (TUVP)
- PVP (Photoselective Laser Vaporization)
- Rezum (water vapor thermotherapy)
- Transurethral guided Laser Induced Prostatectomy (TULIP)
- Transurethral Incision of the Prostate (TUIP)
- Transurethral Microwave Thermography (TUMT)
- Transurethral Needle Ablation (TUNA)
- Visually guided Laser Ablation of the Prostate (VLAP)

Blue Advantage will treat the following treatments for benign prostatic hyperplasia as a non-covered benefit and as investigational, including but not limited to:

- Absolute ethanol injection
- Balloon dilation of the prostate
- Prostate artery embolization of the prostate
- Temporary Prostatic Stent
- Transurethral Plasmakinetic Resection of the Prostate (PKRP)
- Water induced thermotherapy

Blue Advantage does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. Blue Advantage administers benefits based on the members' contract and medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most

appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

DESCRIPTION OF PROCEDURE OR SERVICE:

Benign prostatic hyperplasia (BPH) is a common condition in older men, affecting to some degree 40% of men in their 50s, 70% of those between ages 60 and 69, and almost 80% of those ages 70 and older.1, BPH is a histologic diagnosis defined as an increase in the total number of stromal and glandular epithelial cells within the transition zone of the prostate gland. In some men, BPH results in prostate enlargement which can, in turn, lead to benign prostate obstruction and bladder outlet obstruction, which are often associated with lower urinary tract symptoms (LUTS) including urinary frequency, urgency, irregular flow, weak stream, straining, and waking up at night to urinate. Lower urinary tract symptoms are the most commonly presenting urological complaint and can have a significant impact on quality of life.

BPH does not necessarily require treatment. The decision on whether to treat BPH is based on an assessment of the impact of symptoms on quality of life along with the potential side effects of treatment. Options for medical treatment include alpha-1-adrenergic antagonists, 5-alphareductase inhibitors, anticholinergic agents, and phosphodiesterase-5 inhibitors. Medications may be used as monotherapy or in combination.

Patients with persistent symptoms despite medical treatment may be considered for surgical treatment. The traditional standard treatment for BPH is transurethral resection of the prostate (TURP). TURP is generally considered the reference standard for comparisons of BPH procedures. Several minimally invasive prostate ablation procedures have also been developed, including transurethral microwave thermotherapy, transurethral needle ablation of the prostate, urethromicroablation phototherapy, and photoselective vaporization of the prostate. The prostatic urethral lift procedure involves the insertion of one or more permanent implants into the prostate, which retracts prostatic tissue and maintains an expanded urethral lumen.

Transurethral water vapor thermal therapy and transurethral waterjet ablation (aquablation) have been investigated as minimally invasive alternatives to transurethral resection of the prostate, considered the traditional standard treatment for benign prostatic hyperplasia. Transurethral water vapor thermal therapy uses radiofrequency-generated water vapor (~103°C) thermal energy based on the thermodynamic properties of convective versus conductive heat transfer to ablate prostate tissue. Aquablation cuts tissue by using a pressurized jet of fluid delivered to the prostatic urethra.

KEY POINTS:

This evidence review has been updated regularly with search of the MEDLINE database. Most recently, the literature was reviewed through April 21, 2022.

Summary of Evidence

Laser Techniques

There have been multiple studies performed using laser procedures. Generally, these procedures have shown significant improvements in IPSS, QoL score and Qmax. Long term follow-up with laser procedures have shown results similar to TURP. The evidence is sufficient to determine the effects of these techniques on net health outcome.

Transurethral Techniques

There have been multiple studies performed using transurethral techniques for BPH. Excellent long term results have been reported as well as improvements in IPSS, QoL score and Qmax. The evidence is sufficient to determine the effects of these techniques on the net health outcome.

Other Techniques

The evidence for other techniques such as Aquablation, Rezum, balloon dilation, cryoablation, et al consists of RCTs, meta-analyses, single arm prospective studies, and comparative trials. Most studies are small and do not have long term data. One industry sponsored RCT for Rezum with results to 4 years shows promising results, but additional long term and well-designed randomized controlled studies are needed. Additionally, there is a lack of comparison of these procedures to TURP. The evidence is insufficient to determine the effects of these procedures on net health outcome.

For individuals who have BPH and lower urinary tract symptoms (LUTS) who receive transurethral water vapor thermal therapy, the evidence includes one 3-month, sham-controlled, randomized trial of 197 patients with a 5-year uncontrolled follow-up phase. The outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. At 3 months, LUTS improved more in the intervention group compared to the sham procedure. No adverse effects on erectile or ejaculatory function were observed, and improvements were sustained through 5 years of follow-up. The evidence is limited by the small sample size, short-term duration, lack of blinding of longer-term outcomes, and lack of comparison to alternative treatments such as TURP. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have BPH and LUTS who receive aquablation, the evidence includes a single noninferiority randomized controlled trial (RCT) of aquablation compared to TURP in 187 patients with 3 years of follow-up. The outcomes of interest are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The primary efficacy endpoint was the difference between groups in the change in International Prostate Symptom Score (IPSS) at 6 months, and the primary safety endpoint was the development of Clavien-Dindo persistent grade 1, or 2 or higher operative complications at 3 months. At 6 months, mean IPSS decreased from baseline by 16.9 points for aquablation and 15.1 points for TURP (mean difference 1.8 points; p<.0001 for noninferiority and p=.1347 for superiority). The primary safety endpoint rate was lower in the aquablation group compared to the TURP group (26% vs. 42%, p=.0149). The rate of grade 2 and greater events was similar in the 2 groups (20% for aquablation and 23% for TURP; p=.3038). Over 3 years, improvements remained similar between groups. Confidence in these conclusions is reduced due to imprecision of estimates and a lack of additional supportive trials,

especially with regard to comparative adverse events. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Practice Guidelines and Position Statements

American Urological Association

In 2021, the American Urological Association published guidelines on the surgical evaluation and treatment of lower urinary tract symptoms (LUTS) attributed to benign prostatic hyperplasia (BPH) and included the following recommendations related to the interventions included in this evidence review:

- Water vapor thermal therapy should be considered as a treatment option for patients with LUTS/BPH provided prostate volume is 30 to 80 cc. (Moderate Recommendation; Evidence Level: Grade C)
- Water vapor thermal therapy may be offered as a treatment option to eligible patients who desire preservation of erectile and ejaculatory function. (Conditional Recommendation; Evidence Level: Grade C)
- Robotic waterjet treatment may be offered as a treatment option to patients with LUTS/BPH provided prostate volume is 30 to 80 cc. (Conditional Recommendation; Evidence Level: Grade C)

National Institute for Health and Care Excellence

In 2020, the National Institute for Health and Care Excellence (NICE) issued the following guidance on Rezum for treatment of LUTS secondary to BPH:

"Evidence supports the case for adopting Rezum for treating lower urinary tract symptoms (LUTS) caused by benign prostatic hyperplasia (BPH) in the NHS. Rezum relieves LUTS and improves quality of life."

"Rezum is a minimally invasive procedure. It should be considered as a treatment option for people with:

- moderate to severe LUTS (International Prostate Symptoms Score [IPSS] typically 13 or over) and
- a moderately enlarged prostate (typically between 30 cm3 and 80 cm3)."

In 2018, NICE issued the following guidance on transurethral water jet ablation for LUTS caused by BPH:

"The evidence on transurethral water jet ablation for lower urinary tract symptoms caused by benign prostatic hyperplasia raises no major safety concerns. The evidence on efficacy is limited in quantity. Therefore, this procedure should only be used with special arrangements for clinical governance, consent, and audit or research."

The guidance also states, "NICE encourages further research into transurethral water jet ablation for LUTS caused by BPH and may update the guidance on publication of further evidence. Further research should report long-term follow-up and include reintervention rates."

KEY WORDS:

Prostate BPH, aquablation, waterjet ablation, balloon dilation of the prostate, cryoablation, rezum, temporary prostatic stents, transurethral plasmakinetic resection, PKRP, waterjet, water induced thermotherapy, water vapor thermotherapy, prostatic arterial embolization, artery embolization of the prostate, prostatic ethanol injection, Transurethral Microwave Thermography, TUMT, Transurethral Needle Ablation, TUNA, Laser Transurethral Enucleation of the Prostate, TUEP, Laser Transurethral Vaporization of the Prostate, TUVP, Transurethral guided Laser Induced Prostatectomy, TULIP, PVP, Photoselective Laser Vaporization, Visually guided Laser Ablation of the Prostate, VLAP, Transurethral Incision of the Prostate, TUIP, Transurethral Water Vapor Thermal Therapy, iTindTM System, Temporarily Implanted Nitinol Device

APPROVED BY GOVERNING BODIES:

Multiple instruments including energy-delivery devices employing microwave, radiofrequency, electrical, laser energy, and bipolar plasmakinetic electrovaporization for ablative and vaporization applications; balloons; and stents have received FDA approval.

The SpannerTM temporary prostatic stent received approval from the U.S. Food and Drug Administration (FDA) on December 14, 2006 through the premarket approve or PMA process. The device is intended "for temporary use (up to 30 days) to maintain urine flow and allow voluntary urination in patients following minimally invasive treatment for benign prostatic hyperplasia (BPH) and after initial post-treatment catheterization."

The Rezum System (NxThera, Inc.) received FDA 510(k)designation on August 27, 2015. In February 2018, the 510(k) was renewed and approved intended to relieve symptoms, obstructions, and reduce prostate tissue associated with BPH. It is indicated for men \geq 50 years of age with a prostate volume \geq 30cm3 and \leq 80cm3. The Rezūm System is also indicated for treatment of prostate with hyperplasia of the central zone and/or a median lobe.

BENEFIT APPLICATION:

Coverage is subject to member's specific benefits. Group specific policy will supersede this policy when applicable.

CURRENT CODING:

CPT Codes:

Vascular embolization or occlusion, inclusive of all radiological supervision and interpretation, intraprocedural roadmapping, and imaging guidance necessary to complete the intervention; for tumors, organ ischemia, or infarction (for prostatic arterial embolization)

37243

52450	Transurethral incision of prostate
52601	Transurethral electrosurgical resection of prostate, including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, and internal urethrotomy are included)
52630	Transurethral resection; residual or regrowth of obstructive prostate tissue including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, and internal urethrotomy are included)
52647	Laser coagulation of prostate, including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, and internal urethrotomy are included if performed)
52648	Laser vaporization of prostate, including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, internal urethrotomy and transurethral resection of prostate are included if performed)
52649	Laser enucleation of the prostate with morcellation, including control of postoperative bleeding, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, internal urethrotomy and transurethral resection of prostate are included if performed)
53850	Transurethral destruction of prostate tissue; by microwave thermotherapy
53852	Transurethral destruction of prostate tissue; by radiofrequency thermotherapy
53854	Transurethral destruction of prostate tissue; by radiofrequency generated water vapor thermotherapy
53855	Insertion of a temporary prostatic urethral stent, including urethral measurement
53899	Unlisted procedure, urinary system
55873	Cryosurgical ablation of the prostate (includes ultrasonic guidance and monitoring)
0421T	Transurethral waterjet ablation of prostate, including control of post-operative bleeding, including ultrasound guidance, complete (vasectomy, meatotomy, cystourethroscopy, urethral calibration and/or dilation, and internal urethrotomy are included when performed)

REFERENCES:

- 1. Aagaard MF, Niebuhr MH, Jacobsen JD, et al. Transurethral microwave thermotherapy treatment of chronic urinary retention in patients unsuitable for surgery. Scand J Urol. 2014 Jun;48(3):290-4.
- 2. Abdul-Muhsin HM, Jakob NJ, McLemore RM, et al. Infectious complications associated with the use of temporary prostatic urethral stents in patients with benign prostatic hyperplasia. Can J Urol. 2016 Oct;23(5):8465-8470.
- 3. American Urological Association Benign Prostatic Hyperplasia: Surgical Management of Benign Prostatic Hyperplasia/Lower Urinary Tract Symptoms, 2018 (amended 2019, 2020) Available at: https://www.auanet.org/guidelines/guidelines/benign-prostatic-hyperplasia-(bph)-guideline. Accessed May 27, 2021.
- 4. American Urological Association. Benign Prostatic Hyperplasia: Surgical management of benign prostatic hyperplasia/lower urinary tract symptoms. 2018; reaffirmed 2019. www.auanet.org/guidelines/benign-prostatic-hyperplasia-(bph)-guideline
- 5. American Urological Association. Management of benign prostatic hyperplasia. 2010; reaffirmed 2014. www.auanet.org/education/guidelines/benign-prostatic-hyperplasia.cfm. Accessed January 2019.
- 6. American Urological Association. Surgical management of lower urinary tract symptoms attributed to benign prostatic hyperplasia. 2018. https://www.auanet.org/guidelines/benign-prostatic-hyperplasia/lower-urinary-tract-symptoms-(2018). Accessed January 2019.
- 7. Arslan M, Ozturk A, Goger YE, et al. Primary results of transurethral prostate ethanol injection. Int Urol Nephrol. 2014 Sep;46(9):1709-13.
- 8. Chang Y, Chang J, Wang H. Transurethral balloon dilation of the prostate and transurethral plasmakinetic resection of the prostate in the treatment of prostatic hyperplasia. Pak J Med Sci. 2018 May-Jun;34(3): 736-739.
- 9. Christidis D, Clarebrough E, Hy V, et al. Prostatic artery embolization for benign prostatic obstruction: assessment of safety and efficacy. World J Urol. 2018 Apr; 36(4):575-584.
- 10. Cunningham GR, Kadmon D. Medical treatment of benign prostatic hyperplasia. Up to Date. https://www.uptodate.com/contents/medical-treatment-of-benign-prostatic-hyperplasia?topicRef=8093&source=see link. Accessed January 18. 2019.
- 11. Cunningham GR, Kadmon D. Surgical treatment of benign prostatic hyperplasia. Up to Date. www.uptodate.com/contents/surgical-treatment-of-benign-prostatic-hyperplasia?topicRef=6891&source=see_link. Accessed January 18, 2019.
- 12. Darson MF, Alexander EE, Schiffman ZJ, et al. Procedural techniques and multicenter postmarket experience using minimally invasive convective radiofrequency thermal therapy with Rezum system for treatment of lwer urinary tract symptoms due to benign prostatic hyperplasia. Res Rep Urol. 2017 Aug 21;9:159-68.
- 13. Dixon CM, Cedano ER, Pacik D, et al. Two year results after convective radiofrequency water vapor thermal therapy of symptomatic benign prostatic hyperplasia. Res Rep Urol. 2016 Nov 21;8:207-16.
- 14. El-Husseiny T, Buchholz N. Transurethral ethanol ablation of the prostat for symptomatic benign prostatic hyperplasia: long term follow-up. J Endourol. 2011 Mar; 25(3):477-80.

- Food and Drug Administration (2017). Aquabeam System Device Classification Under Section 513(f)(2)(De Novo). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm?ID=DEN170024. Accessed April 22, 2022.
- 16. Food and Drug Administration. https://www.accessdata.fda.gov/cdrh_docs/pdf18/K180237.pdf. Accessed February 26, 2019.
- 17. Giling P, Reuther R, Kahokehr A, Fraundorfer M. Aquablation- image-guided robot-assisted waterjet ablation of the prostate: initial clinical experience. BJU Int. 2016 Jun;117(6):923-9.
- 18. Gilling P, Barber N, Bidair M, et al. Three-year outcomes after Aquablation therapy compared to TURP: results from a blinded randomized trial. Can J Urol. Feb 2020; 27(1): 10072-10079.
- 19. Gilling P, Barber N, Bidair M, et al. WATER: A Double-Blind, Randomized, Controlled Trial of Aquablation (R) vs Transurethral Resection of the Prostate in Benign Prostatic Hyperplasia. J Urol. May 2018; 199(5): 1252-1261.
- 20. Gilling PJ, Barber N, Bidair M, et al. Randomized Controlled Trial of Aquablation versus Transurethral Resection of the Prostate in Benign Prostatic Hyperplasia: One-year Outcomes. Urology. Mar 2019; 125: 169-173.
- 21. Grosso M, Balderi A, Arno M, et al. Prostatic artery embolization in benign prostatic hyperplasia: Preliminary results in 13 patients. Radiol Med. 2015;120(4):361-368.
- 22. Hwang EC, Jung JH, Borofsky M et al. Aquablation of the prostate for the treatment of lower urinary tract symptoms in men with benign prostatic hyperplasia. Chochrane Database Syst Rev. 2019 Feb;2:CD013143.
- 23. IOM (Institute of Medicine). 2011. Clinical Practice Guidelines We Can Trust. Washington, DC: The National Academies Press.
- 24. Kang TW, Jung JH, Hwang EC, et al. Convective radiofrequency water vapour thermal therapy for lower urinary tract symptoms in men with benign prostatic hyperplasia. Cochrane Database Syst Rev. Mar 25 2020; 3: CD013251.
- 25. Lebdai S, Delongchamps NB, Sapoval M, et al. Early results and complications of prostatic arterial embolization for benign prostatic hyperplasia. World J Urol. 2016;34(5):625-632.
- 26. Lerner LB, McVary KT, Barry MJ, et al. Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA GUIDELINE PART II-Surgical Evaluation and Treatment. J Urol. Oct 2021; 206(4): 818-826.
- 27. Liu Z, Li YW, Wu WR, Lu Q. Long-term clinical efficacy and safety profile of transurethral resection of prostate versus plasmakinetic resection of the prostate for benign prostatic hyperplasia. Urology. 2017 May;103:198-203.
- 28. McVary KT, Gange SN, Gittelman MC, et al. Minimally Invasive prostate convective water vapor energy ablation: a multicenter, randomized, controlled study for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia.
- 29. McVary KT, Gittelman MC, Goldberg KA, et al. Final 5-Year Outcomes of the Multicenter Randomized Sham-Controlled Trial of Rezum Water Vapor Thermal Therapy for Treatment of Moderate-To-Severe Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia. J Urol. Apr 19 2021: 101097JU0000000000001778.

- 30. McVary KT, Roehrborn CG. Three year outcomes of the prospective, randomized controlled Rezum system study: convective radiofrequency thermal therapy for treatment of lower urinary tract symptoms due to benign prostatic hyperplasia.
- 31. McVary KT, Rogers T, Roehrborn CG. Rezum water vapor thermal therapy for lower urinary tract symptoms associated with benign prostatic hyperplasia: 4-year results from randomized controlled study. Urology. 2019 Jan 21. Pii:S0090-4295(19)30070-6.
- 32. Mollengarden D, Goldberg K, Wong D, et al. Convective radiofrequency water vapor thermal therapy for benign prostatic hyperplasia: a single office experience. Prostate Cancer Prostatic Dis. 2018 Sep;21(3):379-385.
- 33. National Institute for Health and Care Excellence (2020). Rezum for treating lower urinary tract symptoms secondary to benign prostatic hyperplasia. https://www.nice.org.uk/guidance/mtg49/chapter/1-Recommendations. Accessed May 27, 2021.
- 34. National Institute for Health and Care Excellence (2020). Rezum for treating lower urinary tract symptoms secondary to benign prostatic hyperplasia. https://www.nice.org.uk/guidance/mtg49/chapter/1-Recommendations. Accessed April 23, 2022.
- 35. National Institute for Health and Care Excellence. Transurethral water vapour ablation for lower urinary tract symptoms caused by benign prostatic hyperplasia. August 2018. https://www.nice.org.uk/guidance/ipg625. Accessed January 2019.
- 36. Porpiglia F, Fiori C, Bertolo R. 3 year follow-up of temporary implantable nitinol device implantation for the treatment of benign prostatic obstruction. BJU Int. 2018 Jul;122(1):106-112.
- 37. Sun F, Sun X, Shi Q, Zhai Y. Transurethral procedures in the treatment of benign prostatic hyperplasia: A systematic review and meta-analysis of effectiveness and complications. Medicine (Baltimore). 2018 Dec;97(51)e13360.
- 38. Teoh JY, Chiu PK, Yee CH, et al. Prostatic artery embolization in treating benign prostatic hyperplasia: A systematic review. Int Urol Nephrol. 2017;49(2):197-203.
- 39. Thurmond P, Bose S, Lerner LB. Holmium laser for the surgical treatment of benign prostatic hyperplasia. Can J Urol. 2016;23(4):8356-62.
- 40. UpToDate. Medical treatment of benign prostatic hyperplasia. 2019. Available at: https://www.uptodate.com/contents/medical-treatment-of-benign-prostatichyperplasia?search=benign%20prostatic%20hyperplasia&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1. Accessed May 18, 2020.
- 41. UpToDate. Medical treatment of benign prostatic hyperplasia. 2021. Available at: https://www.uptodate.com/contents/medical-treatment-of-benign-prostatic-hyperplasia?search=benign%20prostatic%20hyperplasia&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1. Accessed May 27, 2021.
- 42. UpToDate. Medical treatment of benign prostatic hyperplasia. 2022. Available at: https://www.uptodate.com/contents/medical-treatment-of-benign-prostatic-hyperplasia?search=benign%20prostatic%20hyperplasia&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1. Accessed April 22, 2022.

- 43. Westwood, JJ, Geraghty, RR, Jones, PP, Rai, BB, Somani, BB. Rezum: a new transurethral water vapour therapy for benign prostatic hyperplasia. Ther Adv Urol, 2018 Oct 23;10(11).
- 44. Yamada Y, Furusawa J, Sugimura Y, Kuromatsu. Photoselective vaporization of the prostate: Long-term outcomes and safety during 10 years of follow-up. J Endourol. 2016 Dec;30(12): 1306-1311.
- 45. Zhao C, Yang H, Chen Z, Ye Z. Thulium laser resection versus plasmakinetic resection of prostates in the treatment of benign prostate hyperplasia: A meta-analysis. J Laparoendosc Adv Surg Tech A. 2016 Oct; 26(10): 789-798.

POLICY HISTORY:

Medical Policy Group, September 2019
Medical Policy Administration Committee, September 2019
Medical Policy Panel, June 2020
Medical Policy Group, June 2020
Adopted for Blue Advantage, April 2021
Medical Policy Group, July 2021
Medical Policy Group, June 2022

This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member's plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, pre-determinations, and pre-procedure review) in Blue Cross and Blue Shield's administration of plan contracts.