

Name of Blue Advantage Policy:

Ophthalmologic Techniques That Evaluate the Posterior Segment for Glaucoma

Policy: #465 Latest Review Date: March 2021

Category: Medical Policy Grade: C

BACKGROUND:

Blue Advantage medical policy does not conflict with Local Coverage Determinations (LCDs), Local Medical Review Policies (LMRPs) or National Coverage Determinations (NCDs) or with coverage provisions in Medicare manuals, instructions or operational policy letters. In order to be covered by Blue Advantage the service shall be reasonable and necessary under Title XVIII of the Social Security Act, Section 1862(a)(1)(A). The service is considered reasonable and necessary if it is determined that the service is:

- 1. Safe and effective;
- 2. Not experimental or investigational*;
- 3. Appropriate, including duration and frequency that is considered appropriate for the service, in terms of whether it is:
 - Furnished in accordance with accepted standards of medical practice for the diagnosis or treatment of the patient's condition or to improve the function of a malformed body member;
 - Furnished in a setting appropriate to the patient's medical needs and condition;
 - Ordered and furnished by qualified personnel;
 - One that meets, but does not exceed, the patient's medical need; and
 - At least as beneficial as an existing and available medically appropriate alternative.

*Routine costs of qualifying clinical trial services with dates of service on or after September 19, 2000 which meet the requirements of the Clinical Trials NCD are considered reasonable and necessary by Medicare. Providers should bill **Original Medicare** for covered services that are related to **clinical trials** that meet Medicare requirements (Refer to Medicare National Coverage Determinations Manual, Chapter 1, Section 310 and Medicare Claims Processing Manual Chapter 32, Sections 69.0-69.11).

POLICY:

Effective for dates of service March, 24, 2020, and after:

Blue Advantage will treat analysis of the optic nerve (retinal nerve fiber layer) in the diagnosis and evaluation of patients with glaucoma or glaucoma suspects as a covered benefit when using scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography. (This test is usually not considered medically necessary more than one per 12 months.)

Blue Advantage will treat measurement of ocular blood flow, pulsatile ocular blood flow or blood flow velocity with Doppler ultrasonography as a non-covered benefit and investigational in the diagnosis and follow-up of patients with glaucoma.

Effective for dates of service February 26, 2018, through March 23, 2020, refer to LCD L34555.

Effective for dates of service prior to February 26, 2018:

Blue Advantage will treat analysis of the optic nerve (retinal nerve fiber layer) in the diagnosis and evaluation of patients with glaucoma or glaucoma suspects as a covered benefit when using scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography. (This test is usually not considered medically necessary more than one per 12 months.)

Blue Advantage will treat the measurement of ocular blood flow, pulsatile ocular blood flow or blood flow velocity with Doppler ultrasonography as a non-covered benefit and as investigational in the diagnosis and follow-up of patients with glaucoma.

Blue Advantage does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. Blue Advantage administers benefits based on the members' contract and medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

DESCRIPTION OF PROCEDURE OR SERVICE:

Several techniques have been developed to measure the thickness of the optic nerve and retinal nerve fiber layer as a method to diagnose glaucoma. Measurement of ocular blood flow is also being evaluated as a diagnostic tool for glaucoma.

Diagnosis and Management

A comprehensive ophthalmologic exam is required for the diagnosis of glaucoma, but no single test is adequate to establish diagnosis. A comprehensive ophthalmologic examination includes

assessment of the optic nerve, evaluation of visual fields, and measurement of ocular pressure. The presence of characteristic changes in the optic nerve or abnormalities in visual field, together with increased intraocular pressure (IOP), is sufficient for a definitive diagnosis. However, some patients will show ophthalmologic evidence of glaucoma with normal IOPs. These cases of normal-tension glaucoma are considered to be a type of primary open-angle glaucoma. Angle-closure glaucoma is another type of glaucoma associated with an increase in IOP. The increased IOP in angle-closure glaucoma arises from a reduction in aqueous outflow from the eye due to a closed angle in the anterior chamber.

Conventional management of patients with glaucoma principally involves drug therapy to control elevated IOPs, and serial evaluation of the optic nerve, to follow disease progression. Standard methods of evaluation include careful direct examination of the optic nerve using ophthalmoscopy or stereo photography or evaluation of visual fields. There is interest in developing more objective, reproducible techniques both to document optic nerve damage and to detect early changes in the optic nerve and retinal nerve fiber layer before the development of permanent visual field deficits. Specifically, evaluating changes in retinal nerve fiber layer thickness has been investigated as a technique to diagnose and monitor glaucoma. However, IOP reduction is not effective in decreasing disease progression in a significant number of patients, and in patients with normal-tension glaucoma, there is never an increase in IOP. It has been proposed that vascular dysregulation is a significant cause of damage to the retinal nerve fiber layer, and there is interest in measuring ocular blood flow as both a diagnostic and a management tool for glaucoma. Changes in blood flow to the retina and choroid may be particularly relevant for diagnosis and treatment of normal-tension glaucoma. A variety of techniques have been developed, as described below.

Techniques to Evaluate the Optic Nerve and Retinal Nerve Fiber Layer Confocal Scanning Laser Ophthalmoscopy

Confocal scanning laser ophthalmoscopy is an image acquisition technique intended to improve the quality of the eye examination compared with standard ophthalmologic examination. A laser is scanned across the retina along with a detector system. Only a single spot on the retina is illuminated at any time, resulting in a high-contrast image of great reproducibility that can be used to estimate retinal nerve fiber layer thickness. In addition, this technique does not require maximal mydriasis, which may be problematic in patients with glaucoma. The Heidelberg Retinal Tomograph is a commonly used technology.

Scanning Laser Polarimetry

The retinal nerve fiber layer is birefringent (or biorefractive), meaning that it causes a change in the state of polarization of a laser beam as it passes. A 780-nm diode laser is used to illuminate the optic nerve. The polarization state of the light emerging from the eye is then evaluated and correlated with retinal nerve fiber layer thickness. Unlike confocal scanning laser ophthalmoscopy, scanning laser polarimetry can directly measure the thickness of the retinal nerve fiber layer. GDx is a common scanning laser polarimetry device. GDx contains a normative database and statistical software package that compare scan results with age-matched normal subjects of the same ethnic origin. The advantages of this system are that images can be obtained without pupil dilation and evaluation can be completed in 10 minutes. Current instruments have added enhanced and variable corneal compensation technology to account for corneal polarization.

Optical Coherence Tomography

Optical coherence tomography uses near-infrared light to provide direct cross-sectional measurement of the retinal nerve fiber layer. The principles employed are similar to those used in B-mode ultrasound except light, not sound, is used to produce the two-dimensional images. The light source can be directed into the eye through a conventional slit-lamp biomicroscope and focused onto the retina through a typical 78-diopter lens. This system requires dilation of the patient's pupil. Optical coherence tomography analysis software is being developed to include optic nerve head parameters with spectral domain optical coherence tomography, analysis of macular parameters, and hemodynamic parameters with Doppler optical coherence tomography and optical coherence tomography angiography.

Pulsatile Ocular Blood Flow

The pulsatile variation in ocular pressure results from the flow of blood into the eye during cardiac systole. Pulsatile ocular blood flow can thus be detected by the continuous monitoring of IOP. The detected pressure pulse can then be converted into a volume measurement using the known relation between ocular pressure and ocular volume. Pulsatile blood flow is primarily determined by the choroidal vessels, particularly relevant to patients with glaucoma because the optic nerve is supplied in large part by choroidal circulation.

Techniques to Measure Ocular Blood Flow

A number of techniques have been developed to assess ocular blood flow. They include laser speckle flowgraphy, color Doppler imaging, Doppler Fourier domain optical coherence tomography, laser Doppler velocimetry, confocal scanning laser Doppler flowmetry, and retinal functional imaging.

Laser Speckle Flowgraphy

Laser speckle is detected when a coherent light source such as laser light is dispersed from a diffusing surface such as retinal and choroidal vessels and the circulation of the optic nerve head. The varying patterns of light can be used to determine red blood cell velocity and retinal blood flow. However, due to differences in the tissue structure in different eyes, flux values cannot be used for comparisons between eyes. This limitation may be overcome by subtracting background choroidal blood flow results from the overall blood flow results in the region of interest.

Color Doppler Imaging

Color Doppler imaging has also been investigated as a technique to measure the blood flow velocity in the retinal and choroidal arteries. This technique delivers ultrasound in pulsed Doppler mode with a transducer set on closed eyelids. The examination takes 30 to 40 minutes and is most effective for the mean velocity of large ophthalmic vessels such as the ophthalmic artery, the central retinal artery, and the short posterior ciliary arteries. However, total blood flow cannot be determined with this technique, and imaging is highly dependent on probe placement.

Doppler Fourier Domain Optical Coherence Tomography

Doppler Fourier domain optical coherence tomography is a noncontact imaging technique that detects the intensity of the light scattered back from erythrocytes as they move in the vessels of the ocular tissue. This induces a frequency shift that represents the velocity of the blood in the ocular tissue.

Laser Doppler Velocimetry

Laser Doppler velocimetry compares the frequency of reflected laser light from a moving particle to stationary tissue.

Confocal Scanning Laser Doppler Flowmetry

Confocal scanning laser Doppler flowmetry combines laser Doppler flowmetry with confocal scanning laser tomography. Infrared laser light is used to scan the retina, and the frequency and amplitude of Doppler shifts are determined from the reflected light. Determinations of blood velocity and blood volume are used to compute the total blood flow and create a physical map of retinal flow values.

KEY POINTS:

The most recent literature search was performed through January 22, 2021.

Summary of Evidence

For individuals who have glaucoma or suspected glaucoma who receive imaging of the optic nerve and retinal nerve fiber layer, the evidence includes studies on diagnostic accuracy. Relevant outcomes are test accuracy, symptoms, morbid events, functional outcomes, and medication use. Confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography can be used to evaluate the optic nerve and retinal nerve fiber layer in patients with glaucoma and suspected glaucoma. Numerous articles have described findings from patients with known and suspected glaucoma using confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography. These studies have reported that abnormalities may be detected on these examinations before functional changes are noted. The literature and specialty society guidelines have indicated that optic nerve analysis using confocal scanning laser ophthalmoscopy, scanning laser polarimetry, and optical coherence tomography are established add-on tests that may be used to diagnose and manage patients with glaucoma and suspected glaucoma. These results are often considered along with other findings to make diagnostic and therapeutic decisions about glaucoma care, including use of topical medication, monitoring, and surgery to lower intraocular pressure. Thus, accurate diagnosis of glaucoma would be expected to reduce the progression of glaucoma. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome

For individuals who have glaucoma or suspected glaucoma who receive evaluation of ocular blood flow, the evidence includes association studies. Relevant outcomes are test accuracy, symptoms, morbid events, functional outcomes, and medication use. Techniques to measure ocular blood flow or ocular blood velocity are used to determine appropriate glaucoma treatment options. The data for these techniques remain limited. Literature reviews have not identified studies addressing whether these technologies improve diagnostic accuracy or whether they improve health outcomes in patients with glaucoma. Some have suggested that these parameters may inform understanding of the variability in visual field changes in patients with glaucoma, i.e., they may help explain why patients with similar levels of intraocular pressure develop markedly different visual impairments. However, data on use of ocular blood flow, pulsatile ocular blood flow, and/or blood flow velocity are currently lacking. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Practice Guidelines and Position Statements

The purpose of the following information is to provide reference material. Inclusion does not imply endorsement or alignment with the evidence review conclusions.

American Academy of Ophthalmology

In 2020, the American Academy of Ophthalmology issued two preferred practice patterns on primary open-angle glaucoma suspect and primary open-angle glaucoma, both recommending evaluation of the optic nerve and retinal nerve fiber layer. The documents stated that stereoscopic visualization and computer based imaging of the optic nerve head and retinal nerve fiber layer provide different information about the optic nerve and are complementary. Both imaging methods are useful adjuncts as part of a comprehensive clinical examination. The guidelines described three types of computer-based imaging devices (confocal scanning laser ophthalmoscopy, scanning laser polarimetry, optical coherence tomography) currently available for glaucoma, which are similar in their ability to distinguish glaucoma from controls and noted that "computer-based digital imaging of the optic nerve head and retinal nerve fiber layer is routinely used to provide quantitative information to supplement the clinical examination of the optic nerve.... computerized imaging may be useful to distinguish between glaucomatous and nonglaucomatous retinal nerve fiber layer thinning. In addition, the Academy concluded that, as device technology evolves, the performance of diagnostic imaging devices is expected to improve.

U.S. Preventive Services Task Force Recommendations Not applicable.

KEY WORDS:

Doppler ultrasonography, glaucoma, GDx, Glaucoma scope, Heidelberg Retinal Tomograph, Nerve Fiber Analyzer, Ophthalmologic Evaluation, Glaucoma, Optic Nerve Head Analyzer, Optical Coherence Tomography, Pulsatile Ocular Blood Flow, Retinal Nerve Fiber Layer Analysis, Scanning Laser Ophthalmoscope, Scanning Laser Polarimetry, TopSS Device, RTVue® XR OCT AvantiTM, The iExaminerTM

APPROVED BY GOVERNING BODIES:

A number of CSLO, SLP, and OCT devices have been cleared by the FDA through the 510(k) process for imaging the posterior eye segment. For example, the RTVue® XR OCT AvantiTM is an OCT system indicated for the in vivo imaging and measurement of the retina, retinal nerve fiber layer, and optic disc as a tool and aid in the diagnosis and management of retinal diseases by a clinician. The RTVue XR OCT Avanti with Normative Database is a quantitative tool for the comparison of retina, retinal nerve fiber layer, and optic disk measurements in the human eye to a database of known normal subjects. It is intended for use as a diagnostic device to aid in the detection and management of ocular diseases. In 2016, the RTVue XR OCT with Avanti with AngioVueTM Software was cleared by the FDA through the 510(k) process (K153080) as an aid in the visualization of vascular structures of the retina and choroid.

In 2012, the iExaminerTM (Welch Allyn) was cleared for marketing by FDA through the 510(k) process. The iExaminerTM consists of a hardware adapter and associated software (iPhone® App) to capture, store, send, and retrieve images from the PanOpticTM Ophthalmoscope (Welch Allyn) using an iPhone. FDA product code: HKI.

Table. Ocular Imaging Devices Cleared by the US Food and Drug Administration

Table. Ocular Imaging Device		Date	510.k	uun
Device	Manufacturer	Cleared	No.	Indication
Device	Manufacturer	Cicarcu	110.	Imaging of optic
				nerve and retinal
RESCAN 700 CALLISTO eye	Carl Zeiss Meditec AG	1/11/2019	K180229	nerve fiber layer
RESCAN 700 CALLISTO eye	Call Zeiss Meditec AG	1/11/2019	K100229	Ţ.
				Imaging of optic
D -4: W11	Carl Zaina Madia a Ina	10/24/2010	1/102210	nerve and retinal
Retina Workplace	Carl Zeiss Meditec Inc	10/24/2018	K182318	nerve fiber layer
Spectralis HRA+OCT and	TT 1 11			Imaging of optic
variants with High	Heidelberg	10/10/2010	W100560	nerve and retinal
Magnification Module	Engineering GmbH	10/18/2018	K182569	nerve fiber layer
Spectralis HRA+OCT and				Imaging of optic
variants with OCT	Heidelberg	_ ,, _ ,_ , _ , _		nerve and retinal
Angiography Module	Engineering GmbH	9/13/2018	K181594	nerve fiber layer
				Imaging of optic
Spectralis HRA + OCT and	Heidelberg			nerve and retinal
variants	Engineering GmbH	8/30/2018	K173648	nerve fiber layer
				Imaging of optic
Image Filing Software				nerve and retinal
NAVIS-EX	Nidek Co. Ltd	7/19/2018	K181345	nerve fiber layer
				Imaging of optic
				nerve and retinal
Avanti	Optovue Inc.	6/8/2018	K180660	nerve fiber layer
				Imaging of optic
				nerve and retinal
P200TE	Optos plc	2/28/2018	K173707	nerve fiber layer
				Imaging of optic
				nerve and retinal
DRI OCT Triton	Topcon Corporation	1/19/2018	K173119	nerve fiber layer
	•			Imaging of optic
IMAGEnet 6 Ophthalmic Data				nerve and retinal
System	Topcon Corporation	11/1/2017	K171370	
Spectralis HRA + OCT and	•			j
variants Spectralis FA+OCT				
Spectralis ICGA+OCT				
Spectralis OCT Blue Peak				Imaging of optic
Spectralis OCT with	Heidelberg			nerve and retinal
Multicolor	Engineering GmbH	11/1/2017	K172649	nerve fiber layer
PRIMUS	Carl Zeiss Suzhou Co.	6/21/2017	K163195	Imaging of optic
1 1(11/10)	Carr Zeros Suzriou CO.	0/21/201/	12103173	maging of optic

	Ltd.			nerve and retinal
				nerve fiber layer
				Imaging of optic
				nerve and retinal
Retina Workplace	Carl Zeiss Meditec AG	6/21/2017	K170638	nerve fiber layer
				Imaging of optic
				nerve and retinal
iVue	Optovue Inc.	6/9/2017	K163475	nerve fiber layer
				Imaging of optic
				nerve and retinal
3D OCT-1 Maestro	Topcon Corporation	3/3/2017	K170164	nerve fiber layer
				Imaging of optic
				nerve and retinal
EnFocus 2300 EnFocus 4400	Bioptigen Inc.	12/9/2016	K162783	nerve fiber layer
				Imaging of optic
	CARL ZEISS			nerve and retinal
PLEX Elite 9000 SS-OCT	MEDITEC INC.	10/26/2016	K161194	nerve fiber layer
				Imaging of optic
				nerve and retinal
3D OCT-1 Maestro	Topcon Corporation	7/28/2016	K161509	nerve fiber layer
				Imaging of optic
				nerve and retinal
LSFG-NAVI	Softcare Co. Ltd	5/12/2016	K153239	nerve fiber layer
Spectralis HRA + OCT and				
variants (e.g.s below)				
Spectralis FA+OCT Spectralis				
ICGA+OCT Spectralis OCT				Imaging of optic
Blue Peak Spectralis OCT	Heidelberg	- 151-01-5		nerve and retinal
with Multicolor	Engineering GmbH	5/6/2016	K152205	nerve fiber layer
				Imaging of optic
RTVue XR OCT Avanti with		0/11/2016	******	nerve and retinal
AngioVue Software	OPTOVUE INC.	2/11/2016	K153080	nerve fiber layer
				Imaging of optic
	DIODELCENI DIO	10/0/0017	*******	nerve and retinal
EnFocus 2300 EnFocus 4400	BIOPTIGEN INC.	12/2/2015	K150722	nerve fiber layer
	GARA GENER			Imaging of optic
Optical Coherence	CARL ZEISS	0/1/2017	****	nerve and retinal
Tomography	MEDITEC INC	9/1/2015	K150977	nerve fiber layer
				Imaging of optic
OCT	OptoMedical	2/4/2017	17.1.400.50	nerve and retinal
OCT-Camera	Technologies GmbH	3/4/2015	K142953	nerve fiber layer
DESCAN 700 CALLISTS	CADI ZEIGG			Imaging of optic
RESCAN 700 CALLISTO	CARL ZEISS	11/10/2014	TZ 1 4 1 0 4 4	nerve and retinal
EYE	MEDITEC AG	11/18/2014	K141844	nerve fiber layer
PROPPER INSIGHT	PROPPER	9/17/2014	K141638	Imaging of optic

BINOCULAR INDIRECT	MANUFACTURING			nerve and retinal
OPHTHALMOSOPE	CO.INC.			nerve fiber layer
				Imaging of optic
CENTERVUE MACULAR				nerve and retinal
INTEGRITY ASSESSMENT	CENTERVUE SPA	4/23/2014	K133758	nerve fiber layer
AMICO DH-W35	AMICO			Imaging of optic
OPHTHALMOSCOPE	DIAGNOSTIC			nerve and retinal
SERIES	INCORPORATED	3/26/2014	K131939	nerve fiber layer
				Imaging of optic
				nerve and retinal
IVUE 500	OPTOVUE INC.	3/19/2014	K133892	nerve fiber layer
				Imaging of optic
				nerve and retinal
RS-3000 ADVANCE	NIDEK CO. LTD.	2/19/2014	K132323	nerve fiber layer

BENEFIT APPLICATION:

Coverage is subject to member's specific benefits. Group specific policy will supersede this policy when applicable.

CURRENT CODING:

CPT Codes:

92133	Scanning computerized ophthalmic diagnostic imaging, posterior segment; with interpretation and report, unilateral or bilateral; optic nerve		
	Measurement of ocular blood flow by repetitive pressure sampling, with interpretation		
0198T	and report		

REFERENCES:

- 1. Abegao Pinto L, Willekens K, Van Keer K, et al. Ocular blood flow in glaucoma the Leuven Eye Study. Acta Ophthalmol. Sep 2016; 94(6):592-598.
- 2. American Academy of Ophthalmology. Preferred Practice Pattern: Primary open-angle glaucoma. 2020; https://www.aao.org/preferred-practice-pattern/primary-open-angle-glaucoma-ppp. Accessed January 26, 2021.
- 3. American Academy of Ophthalmology. Preferred Practice Pattern: Primary open-angle suspect. 2020; https://www.aao.org/preferred-practice-pattern/primary-open-angle-glaucoma-suspect-ppp. Accessed January 27, 2021
- 4. Bafa M, Lambrinakis I, Dayan M et al. Clinical comparison of the measurement of the IOP with the ocular blood flow tonometer, the Tonopen XL and the Goldmann applanation tonometer. Acta Ophthalmol Scand 2001; 79(1):15-8.

- 5. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Retinal nerve fiber analysis for the diagnosis and management of glaucoma. TEC Assessments 2001; Volume 16, Tab 13.
- 6. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Retinal nerve fiber layer analysis for the diagnosis and management of glaucoma. TEC Assessments 2003; Volume 18, Tab 7.
- 7. Calvo P, Ferreras A, Polo V et al. Predictive value of retrobulbar blood flow velocities in glaucoma suspects. Invest Ophthalmol Vis Sci 2012; 53(7):3875-84.
- 8. Chauhan BC, Hicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology 2009: 116(11):2110-8.
- 9. Cioffi GA. Three assumptions: ocular blood flow and glaucoma. J Glaucoma 1998; 7(5):299-300.
- 10. Ervin AM, Boland MV, Myrowitz EH et al. Screening for Glaucoma: Comparative Effectiveness. Comparative Effectiveness Review No. 59 (Prepared by the Johns Hopkins University Evidence-based Practice Center under Contract No. 290-2007-10061.) AHRQ Publication No. 12-EHC037-EF. Rockville, MD: Agency for Healthcare Research and Quality. April 2012. Available online at: www.effectivehealthcare.ahrq.gov/ehc/products/182/1026/CER59_Glaucoma-Screening_Final-Report_20120524.pdf.
- 11. Fontana L, Poinoosawmy D, Bunce CV et al. Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects. Br J Ophthalmol 1998; 82(7):731-6.
- 12. Grewal DS, Sehi M, Greenfield DS, et al. Comparing rates of retinal nerve fibre layer loss with GDxECC using different methods of visual-field progression. Br J Ophthalmol 2011; 95(8):1122-1127.
- 13. Harris A, Kagermann L, Ehrlich R et al. Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol 2008; 43(3):328-36.
- 14. James CB. Pulsatile ocular blood flow. Br J Ophthalmol 1998; 82(7):720-1.
- 15. Kaiser HJ, Schoetzau A, Stumpfig D et al. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 1997; 123(3):320-7.
- 16. Kalaboukhova L, Fridhammar V, Lindblom B. Glaucoma follow-up by the Heidelberg Retina Tomograph. Graefes Arch Clin Exp Ophthalmol 2006 Jun; 244(6):654-62.
- 17. Kamal DS, Garway-Heath DF, Hitchings RA et al. Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Br J Ophthalmol 2000; 84(9):993-8.
- 18. Kurysheva NI, Parshunina OA, Shatalova EO, et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. Mar 2017; 42(3):411-417.

- 19. Kwartz AJ, Henson DB, Harper RA et al. The effectiveness of the Heidelberg Retina Tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma. Health Technol Assess 2005; 9(46):1-132, iii.
- 20. Lalezary M, Medeiros FA, Weinreb RN et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol 2006; 142(4):576-82.
- 21. Lin SC, Singh K, Jampel HD et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 2007; 114(10):1937-49.
- 22. Medeiros FA, Ng D, Zangwill LM et al. The effects of study design and spectrum bias on the evaluation of diagnostic accuracy of confocal scanning laser ophthalmoscopy in glaucoma. Invest Ophthalmol Vis Sci 2007; 48(1):214-22.
- 23. Michelessi M, Lucenteforte E, Oddone F, et al. Optic nerve head and fiber layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015(11):CD008803.
- 24. Mohammadi K, Bowd C, Weinreb RN et al. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predicts glaucomatous visual field loss. Am J Ophthalmol 2004; 138(4):592-601.
- 25. Mohindroo C, Ichhpujani P, Kumar S. Current imaging modalities for assessing ocular blood flow in glaucoma. J Curr Glaucoma Pract. Sep-Dec 2016; 10(3):104-112.
- 26. Rankin SJ, Walman BE, Buckley AR et al. Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma. Am J Ophthalmol 1995; 119(6):685-93.
- 27. Resch H, Schmidl D, Hommer A et al. Correlation of optic disc morphology and ocular perfusion parameters in patients with primary open angle glaucoma. Acta Ophthalmol 2011; 89(7):e544-9.
- 28. Rusia D, Harris A, Pernic A et al. Feasibility of creating a normative database of colour Doppler imaging parameters in glaucomatous eyes and controls. Br J Ophthalmol 2011; 95(9):1193-1198.
- 29. Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow Relevance for glaucoma. Exp Eye Res 2011; 93(2):141-155.
- 30. Shiga Y, Omodaka K, Kunikata H et al. Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci 2013; 54(12):7699-706.
- 31. Witkowska KJ, Bata AM, Calzetti G, et al. Optic nerve head and retinal blood flow regulation during isometric exercise as assessed with laser speckle flowgraphy. PLoS One. Sep 12 2017; 12(9):e0184772.
- 32. Zangwill LM, Weinreb RN, Beiser JA et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Arch Ophthalmol 2005; 123(9):1188-97.

33. Zangwill LM, Weinreb RN, Berry CC et al. The confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study: study design and baseline factors. Am J Ophthalmol 2004; 137(2):219-27.

POLICY HISTORY:

Adopted for Blue Advantage, February 2011

Available for comment February 9 – March 25, 2011

Medical Policy Group, February 2012

Medical Policy Group, February 2013

Medical Policy Group, February 2014

Medical Policy Group, February 2015

Medical Policy Group, September 2016

Medical Policy Group, April 2017

Medical Policy Group, December 2017

Medical Policy Group, April 2020: Reinstated policy effective March 24, 2020.

Medical Policy Group, March 2021

This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member's plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, pre-determinations, and pre-procedure review) in Blue Cross and Blue Shield's administration of plan contracts.