Name of Blue Advantage Policy: Microwave Tumor Ablation

Policy #: 512 Latest Review Date: September 2020
Category: Surgery Policy Grade: B

BACKGROUND:

Blue Advantage medical policy does not conflict with Local Coverage Determinations (LCDs), Local Medical Review Policies (LMRPs) or National Coverage Determinations (NCDs) or with coverage provisions in Medicare manuals, instructions or operational policy letters. In order to be covered by Blue Advantage the service shall be reasonable and necessary under Title XVIII of the Social Security Act, Section 1862(a)(1)(A). The service is considered reasonable and necessary if it is determined that the service is:

1. Safe and effective;
2. Not experimental or investigational*;
3. Appropriate, including duration and frequency that is considered appropriate for the service, in terms of whether it is:
 • Furnished in accordance with accepted standards of medical practice for the diagnosis or treatment of the patient’s condition or to improve the function of a malformed body member;
 • Furnished in a setting appropriate to the patient’s medical needs and condition;
 • Ordered and furnished by qualified personnel;
 • One that meets, but does not exceed, the patient’s medical need; and
 • At least as beneficial as an existing and available medically appropriate alternative.

*Routine costs of qualifying clinical trial services with dates of service on or after September 19, 2000 which meet the requirements of the Clinical Trials NCD are considered reasonable and necessary by Medicare. Providers should bill Original Medicare for covered services that are related to clinical trials that meet Medicare requirements (Refer to Medicare National Coverage Determinations Manual, Chapter 1, Section 310 and Medicare Claims Processing Manual Chapter 32, Sections 69.0-69.11).
POLICY:
Effective for dates of service on or after December 11, 2012:
Blue Advantage will treat microwave ablation as a covered benefit for patients with one of the following indications:

- Hepatocellular carcinoma (HCC);
- Metastatic liver carcinoma.
- Primary or metastatic lung tumors

Blue Advantage will treat microwave ablation of primary and metastatic tumors, other than those listed above, as a non-covered service and as investigational.

Blue Advantage does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. Blue Advantage administers benefits based on the members' contract and medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

DESCRIPTION OF PROCEDURE OR SERVICE:
Microwave ablation (MWA) is a technique to destroy tumors and soft tissue by using microwave energy to create thermal coagulation and localized tissue necrosis. MWA is used to treat tumors considered to be inoperable, not amenable to resection, or to treat patients ineligible for surgery due to age, presence of comorbidities, or poor general health. MWA may be performed as an open procedure, laparoscopically, percutaneously or thoracoscopically under image guidance (e.g., ultrasound, computed tomography [CT] or magnetic resonance imaging [MRI]) with sedation, or local or general anesthesia. This technique may also be referred to as microwave coagulation therapy.

Microwave ablation (MWA) uses microwave energy induces an ultra-high speed, 915 MHz or 2450 MHz (2.45GHz), alternating electric field which causes water molecule rotation and the creation of heat. This results in thermal coagulation and localized tissue necrosis. In MWA, a single microwave antenna or multiple antennas connected to a generator are inserted directly into the tumor or tissue to be ablated; energy from the antennas generates friction and heat. The local heat coagulates the tissue adjacent to the probe, resulting in a small, approximately 2-3 cm elliptical area (5 x 3 cm) of tissue ablation. In tumors greater than 2 cm in diameter, 2-3 antennas may be used simultaneously to increase the targeted area of MWA and shorten operative time. Multiple antennas may also be used simultaneously to ablate multiple tumors. Tissue ablation occurs quickly, within one minute after a pulse of energy, and multiple pulses may be delivered within a treatment session depending on the size of the tumor. The cells killed by MWA are typically not removed but are gradually replaced by fibrosis and scar tissue. If there is local recurrence, it occurs at the edges. Treatment may be repeated as needed. MWA may be used to:
1) control local tumor growth and prevent recurrence; 2) palliate symptoms; and 3) extend survival duration.

MWA is an ablative technique similar to radiofrequency or cryosurgical ablation. However, MWA has some potential advantages over radiofrequency or cryosurgical ablation. In MWA, the heating process is active, which produces higher temperatures than the passive heating of radiofrequency ablation and should allow for more complete thermal ablation in a shorter period of time. The higher temperatures reached with MWA (over 100° C) can overcome the “heat sink” effect in which tissue cooling occurs from nearby blood flow in large vessels potentially resulting in incomplete tumor ablation. MWA does not rely on the conduction of electricity for heating, and therefore, does not have electrical current flow through patients and does not require grounding pads be used during the procedure since there is no risk of skin burns. Additionally, MWA does not produce electric noise, which allows ultrasound guidance to occur during the procedure without interference, unlike radiofrequency ablation. Finally, MWA can be completed in less time than radiofrequency ablation since multiple antennas can be used simultaneously.

Adverse Events
Complications from MWA may include pain and fever. Other potential complications associated with MWA include those caused by heat damage to normal tissue adjacent to the tumor (e.g., intestinal damage during MWA of the kidney or liver), structural damage along the probe track (e.g., pneumothorax as a consequence of procedures on the lung), liver enzyme elevation, liver abscess, ascites, pleural effusion, diaphragm injury or secondary tumors if cells seed during probe removal. MWA should be avoided in pregnant patients since potential risks to the patient and/or fetus have not been established and in patients with implanted electronic devices such as implantable pacemakers that may be adversely affected by microwave power output.

Applications
MWA was first used percutaneously in 1986 as an adjunct to liver biopsy. Since that time, MWA has been used for ablation of tumors and tissue for the treatment of many conditions including: hepatocellular carcinoma, colorectal cancer metastatic to the liver, renal cell carcinoma, renal hamartoma, adrenal malignant carcinoma, non-small cell lung cancer, intrahepatic primary cholangiocarcinoma, secondary splenomegaly and hypersplenism, abdominal tumors and other tumors not amenable to resection. Well-established local or systemic treatment alternatives are available for each of these malignancies. The hypothesized advantages of MWA for these cancers include improved local control and those common to any minimally invasive procedure (e.g., preserving normal organ tissue, decreasing morbidity, decreasing length of hospitalization). MWA has been investigated as a treatment for unresectable hepatic tumors, both as primary treatment, palliative treatment and as a bridge to liver transplant. In the latter setting, it is thought that MWA will reduce the incidence of tumor progression while awaiting transplantation and thus maintain a patient’s candidacy for liver transplant.

KEY POINTS:
The most recent literature update was performed through July 28, 2020.
Summary of Evidence

For individuals who have unresectable primary or metastatic breast cancer who receive MWA, the evidence includes case series and a systematic review of feasibility and pilot studies conducted prior to 2010. Relevant outcomes are overall survival (OS), disease-specific survival, symptoms, quality of life, and treatment-related mortality and morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have an unresectable primary or metastatic hepatic tumor who receive MWA, the evidence includes RCTs, comparative observational studies, and systematic reviews comparing MWA to RFA and to surgical resection. Relevant outcomes are overall survival, disease-specific survival, symptoms, quality of life, and treatment-related mortality and morbidity. The body of evidence indicates that MWA is an effective option in patients for whom resection is not an option. Although studies had methodological limitations, results consistently showed that that MWA and RFA had similar survival outcomes with up to 5 years of followup in patients with a single tumor <5 cm or up to 3 nodules <3 cm each. In a meta-analysis of observational studies, patients receiving MWA had higher local recurrence rates and lower survival than those who received resection, but the patient populations were not limited to those who had unresectable tumors. MWA was associated with lower complications, intraoperative blood loss, and hospital length of stay. The evidence is sufficient to determine the effects of the technology on health outcomes.

For individuals who have an unresectable primary or metastatic lung tumor who receive MWA, the evidence includes one RCT, retrospective observational studies, and systematic reviews of these studies. Relevant outcomes are overall survival, disease-specific survival, symptoms, quality of life, and treatment-related mortality and morbidity. The body of evidence indicates that MWA is an effective option in patients for whom resection is not an option. In the RCT, direct comparison of MWA and RFA in patients with primary or metastatic lung cancer (mean tumor size 1.90 cm [± 0.89] at baseline) found similar mortality rates up to 12 months of follow-up. In the first of three systematic reviews that included 12 retrospective observational studies, local recurrence rates were similar for MWA and RFA at a range of 9 to 47 months of follow-up. In the second systematic review with a meta-analysis, there was lower overall survival with MWA compared to RFA, but studies were not directly comparable due to clinical and methodological heterogeneity. However, the authors concluded that percutaneous RFA and MWA were both effective with a high safety profile. In the third systematic review using a network meta-analysis, the weighted average overall survival rates for MWA were 82.5%, 54.6%, 35.7% 29.6%, and 16.6% at 1, 2, 3, 4, and 5 years, respectively. Limitations of the body of evidence included a lack of controlled studies and heterogeneity across studies. The RCT did not report results by tumor size or number of metastases. The observational studies included in the systematic reviews did not report sufficient information to assess effectiveness or safety of MWA in subgroups based on the presence of multiple tumors or total tumor burden. Therefore, conclusions about the evidence sufficiency can only be made about patients with single tumors. For this population, the evidence is sufficient to determine the effects of the technology on health outcomes.

For individuals who have an unresectable primary or metastatic renal tumor who receive MWA, the evidence includes one RCT that compared MWA to partial nephrectomy, retrospective
reviews, and case series. Relevant outcomes are overall survival, disease-specific survival, symptoms, quality of life, and treatment-related mortality and morbidity. In the RCT, overall local recurrence-free survival at 3 years was 91.3% for MWA and 96.0% for partial nephrectomy (p=0.54). This positive outcome should be replicated in additional RCTs. There are also no controlled studies comparing MWA to other ablation techniques in patients with renal tumors. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have unresectable primary or metastatic solid tumors other than breast, hepatic, lung, or renal who receive MWA, the evidence includes systematic reviews and case series. Relevant outcomes are OS, disease-specific survival, symptoms, quality of life, and treatment-related mortality and morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements

NCCN

The National Comprehensive Cancer Network (NCCN) guidelines on hepatobiliary cancers (v.4.2020) lists MWA (along with radiofrequency ablation, cryoablation and percutaneous alcohol injection) as a treatment option for hepatocellular carcinoma tumors in patients who are not candidates for potential curative treatments (e.g., resection and transplantation) and do not have large-volume extrahepatic disease. Ablation should only be considered when tumors are accessible by percutaneous, laparoscopic or open approaches. The guidelines indicate “ablative therapies are most effective for [HCC] tumors less than 3 cm...”. Hepatocellular carcinoma tumors between three to five centimeters may also be treated with ablation to prolong survival when used in combination with arterial embolization. Additionally, the tumor location must be accessible to permit ablation of the tumor and tumor margins without ablating major vessels, bile ducts, the diaphragm or other abdominal organs. However, only 1 RCT of MWA compared to RFA was cited in the guidelines to support recommendations for MWA.

The guidelines on non-small cell lung cancer (v.6.2020) do not mention MWA and state, "for medically operative disease, resection is the preferred local treatment modality (other modalities include SABR, thermal ablation such as radiofrequency ablation, and cryotherapy"). Guidelines on small-cell lung cancer v.4.2020) state, "stereotactic ablative radiotherapy is an option for certain patients with medically inoperable stage I to IIA small-cell lung cancer.

The Network guidelines on neuroendocrine tumors (v.2.2020) state that: cytoreductive surgery or ablative therapies, (radiofrequency, cryotherapy, microwave) may be considered in patients with progressive hepatic-predominant metastatic disease to reduce tumor bulk and relieve symptoms of hormone hypersecretion (category 2B). Additionally, although prospective data for ablative therapy interventions are limited, the guideline notes that "percutaneous thermal ablation, often using microwave energy, can be considered for oligometastatic liver disease, generally up to 4 lesions each smaller than 3 cm.”

The guidelines on kidney cancer (v.1.2021) do not specifically address the role of MWA, but state that other thermal ablation techniques (RFA and cryotherapy) may be an option for T1 renal lesions, particularly for masses <3 cm.
NICE
The National Institute for Health and Care Excellence (2016) updated its guidance on MWA for treatment of metastases in the liver. The revised guidance states:

- Current evidence on MWA for treating liver metastases raises no major safety concerns and the evidence on efficacy is adequate in terms of tumor ablation. Therefore this procedure may be used provided that standard arrangements are in place for clinical governance, consent and audit.
- Patient selection should be carried out by a hepatobiliary cancer multidisciplinary team.
- Further research would be useful for guiding selection of patients for this procedure. This should document the site and type of the primary tumor being treated, the intention of treatment (palliative or curative), imaging techniques used to assess the efficacy of the procedure, long-term outcomes and survival.

The Institute also published guidance on MWA for HCC in 2007. This guidance indicated: “Current evidence on the safety and efficacy of MWA of hepatocellular carcinoma appears adequate to support the use of this procedure provided that the normal arrangements are in place for consent, audit and clinical governance.” The guidance also stated there are no major concerns about the efficacy of MWA, but noted that limited, long-term survival data are available.

The Institute (2013) has published guidance on MWA for lung tumors as well. This guidance indicated that "evidence that the procedure improves clinical outcomes and quality of life is limited in quantity and quality. There is a risk of complications, including pneumothorax, which may have serious implications for patients with already compromised lung function. Therefore this procedure should only be used with special arrangements for clinical governance, consent and audit." The guidance encourages further research.

American College of Chest Physicians
The 2013 American College of Chest Physicians (ACCP) evidence-based guidelines on the treatment of non-small cell lung cancer note that the role of ablative therapies in the treatment of high-risk patients with Stage I NSCLC is evolving. The guidelines deal mostly with radiofrequency ablation.

American Urological Association
The American Urological Association (2017) guidelines on renal mass and localized renal cancer note that MWA remains investigational for this indication due to the limited number of published studies and the lack of long-term follow-up data. Cryoablation and RFA are recommended as options for thermal ablation in patients with T1a renal masses <3 cm in size.

U.S. Preventative Services Task Force Recommendations
Microwave tumor ablation is not a preventive service.

KEY WORDS:
Microwave tumor ablation, Microwave coagulation therapy, Tumor microwave ablation, MWA, breast microwave ablation, breast tumor, metastatic tumors, microwave coagulation therapy,
primary tumors, pulmonary microwave ablation, pulmonary tumor, renal microwave ablation, renal tumor, secondary tumors, tumor microwave ablation, urinary system microwave ablation

APPROVED BY GOVERNING BODIES:
Multiple MWA devices have been cleared for marketing by the U.S. Food and Drug Administration through the 510(k) process. These devices are indicated for soft tissue ablation, including partial or complete ablation of nonresectable liver tumors. Some devices are specifically cleared for use in open surgical ablation, percutaneous ablation or laparoscopic procedures. Table 1 is a summary of selected MWA devices cleared by FDA.

The Food and Drug Administration used determinations of substantial equivalence to existing radiofrequency and MWA devices to clear these devices.

This evidence review does not address MWA for the treatment of splenomegaly or ulcers for cardiac applications, or as a surgical coagulation tool.

Table 1. Selected Microwave Ablation Devices Cleared by FDA

<table>
<thead>
<tr>
<th>Device</th>
<th>Indication</th>
<th>Manufacturer</th>
<th>Date Cleared</th>
<th>510(k) No</th>
</tr>
</thead>
<tbody>
<tr>
<td>VivaWave™ Microwave System</td>
<td>Coagulation of soft tissue</td>
<td>Vivant Medical, Inc.</td>
<td>6/2002</td>
<td>K011676</td>
</tr>
<tr>
<td>VivaWave™ Microwave Ablation System</td>
<td>Probe modification</td>
<td>ValleyLab</td>
<td>4/2006</td>
<td>K053535</td>
</tr>
<tr>
<td>Microsoulis Tissue Ablation System</td>
<td>Intraoperative coagulation of soft tissue</td>
<td>Microsoulis Americas, Inc</td>
<td>1/2006</td>
<td>K052919</td>
</tr>
<tr>
<td>MicroSurgeon Microwave Soft Tissue Ablation MTAD-100</td>
<td>Surgical ablation of soft tissue</td>
<td>MicroSurgeon, Inc.</td>
<td>8/2007</td>
<td>K070023</td>
</tr>
<tr>
<td>MicroSurgeon Microwave Tissue Ablation MTAD-200</td>
<td>Probe/design modifications</td>
<td>MicroSurgeon, Inc.</td>
<td>2/2009</td>
<td>K082565</td>
</tr>
<tr>
<td>MedWaves Microwave Coagulation/Ablation System</td>
<td>General surgery use in open procedures for the coagulation and ablation of soft tissues</td>
<td>MedWaves Incorporated</td>
<td>12/2007</td>
<td>K070356</td>
</tr>
<tr>
<td>Acculis Accu2i pMTA Microwave Tissue Ablation Applicator</td>
<td>Intraoperative coagulation of soft tissue</td>
<td>Microsoulis Holdings, Ltd</td>
<td>8/2010</td>
<td>K094021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11/2012</td>
<td>K122762</td>
</tr>
<tr>
<td>System Name</td>
<td>Description</td>
<td>Manufacturer</td>
<td>Date</td>
<td>Code</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Acculis Accu2i pMTA Applicator and SulisV pMTA Generator</td>
<td>Software addition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MicroThermX Microwave Ablation System</td>
<td>Coagulation (ablation) of soft tissue. May be used in open surgical as well as percutaneous ablation procedures.</td>
<td>BSD Medical Corporation</td>
<td>8/2010</td>
<td>K100786</td>
</tr>
<tr>
<td>EmprintTM Ablation System EmprintTM Ablation System Emprint™ SX Ablation Platform with Thermosphere™ Technology Emprint™ Ablation Platform with Thermosphere™ Technology and Emprint™ SX Ablation Platform with Thermosphere™ Technology</td>
<td>percutaneous, laparoscopic, and intraoperative coagulation (ablation) of soft tissue, including partial or complete ablation of non-resectable liver tumors. Same with design modification of device antenna for percutaneous use 3-D navigation feature assists in the placement of antenna using real-time image guidance during intraoperative and laparoscopic ablation procedures. Antenna modification and update to instructions for use</td>
<td>Covidien LLC</td>
<td>4/2014</td>
<td>K133821</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12/2016</td>
<td>K163105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/2017</td>
<td>K171358</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/2020</td>
<td>K193232</td>
</tr>
<tr>
<td>Device Description</td>
<td>Indication / Function</td>
<td>Manufacturer</td>
<td>Date</td>
<td>Code</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Certus 140 2.45 GHz Ablation System and Accessories Certus 140™ 2.45 GHz Ablation System and Accessories CertusurgGT Surgical Tool Certus 140™ 2.45 GHz Ablation System and Accessories</td>
<td>Ablation (coagulation) of soft tissue. Ablation (coagulation) of soft tissue in percutaneous, open surgical and in conjunction with laparoscopic surgical settings. Surgical coagulation (including Planar Coagulation) in open surgical settings. Same indication with probe redesign</td>
<td>NeuWave Medical, Inc.</td>
<td>10/2010</td>
<td>K100744</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01/2012</td>
<td>K113237</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/2013</td>
<td>K130399</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>05/2016</td>
<td>K160936</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/2018</td>
<td>K173756</td>
</tr>
<tr>
<td>NEUWAVE Flex Microwave Ablation System (FLEX)</td>
<td>Ablation (coagulation) of soft tissue. Design evolution of Certus 140 2.45GHz Ablation System (K160936)</td>
<td>NeuWave Medical, Inc.</td>
<td>03/2017</td>
<td>K163118</td>
</tr>
<tr>
<td>Solero Microwave Tissue Ablation (MTA) System and Accessories</td>
<td>Ablation of soft tissue during open procedures</td>
<td>Angiodynamics, Inc.</td>
<td>5/2017</td>
<td>K162449</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Microwave Ablation System</td>
<td>Coagulation (ablation) of soft tissue</td>
<td>Surgnova Healthcare Technologies (Zhejiang) Co., Ltd</td>
<td>7/2019</td>
<td>K183153</td>
</tr>
</tbody>
</table>

BENEFIT APPLICATION:
Coverage is subject to member’s specific benefits. Group specific policy will supersede this policy when applicable.

CURRENT CODING:
CPT Codes:
As of 01/01/2018, there are no specific CPT codes for microwave ablation.

The unlisted CPT code for the anatomic area should be reported such as code 47399- unlisted procedure liver; 53899- unlisted procedure urinary system (for renal tumors); 32999- unlisted procedure lung; 19499- unlisted procedure breast.

This procedure may also be billed with radiofrequency ablation codes for the anatomic area, such as code 32998- pulmonary, 47382- liver, and 50592- renal.

PREVIOUS CODING:
0301T-Destruction/reduction of malignant breast tumor with externally applied focused microwave, including interstitial placement of disposable catheter with combined temperature monitoring probe and microwave focusing sensocatheter under ultrasound thermotherapy guidance. *(Deleted 12/31/2017)*

REFERENCES:

82. Shen X, Ma S, Tang X et al. Clinical outcome in elderly Chinese patients with primary hepatocellular carcinoma treated with percutaneous microwave coagulation therapy (PMCT): A Strobe-compliant observational study.. Medicine (Baltimore), 2018 Sep 2;97(35).

87. Smolock AR, Lubner MG, Ziemlewicz TJ et al. Microwave ablation of hepatic tumors abutting the diaphragm is safe and effective.. AJR Am J Roentgenol, 2014 Dec 30;204(1).
102. Xu J, Zhao Y. Comparison of percutaneous microwave ablation and laparoscopic resection in the prognosis of liver cancer.. Int J Clin Exp Pathol, 2015 Dec 1;8(9).

POLICY HISTORY:
Adopted for Blue Advantage, October 2012
Available for comment October 24 through December 10, 2012
Medical Policy Group, June 2013
Medical Policy Group, October 2013
Medical Policy Group, January 2015
Medical Policy Group, March 2016
Medical Policy Group, September 2017
Medical Policy Group, December 2017
Medical Policy Group, September 2018 (4): Updates to Key Points and Governing Bodies. No change to policy statement.
Medical Policy Group, October 2019. Available for comment October 4 through November 18, 2019
Medical Policy Group, September 2020
This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member’s plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, pre-determinations, and pre-procedure review) in Blue Cross and Blue Shield’s administration of plan contracts.