

<u>Name of Blue Advantage Policy:</u> Autologous Chondrocyte Implantation for Focal Articular Cartilage Lesions

Policy #: 156 Latest Review Date: April 2023 Category: Surgery

BACKGROUND:

Blue Advantage medical policy does not conflict with Local Coverage Determinations (LCDs), Local Medical Review Policies (LMRPs) or National Coverage Determinations (NCDs) or with coverage provisions in Medicare manuals, instructions or operational policy letters. In order to be covered by Blue Advantage the service shall be reasonable and necessary under Title XVIII of the Social Security Act, Section 1862(a)(1)(A). The service is considered reasonable and necessary if it is determined that the service is:

- *1. Safe and effective;*
- 2. Not experimental or investigational*;
- 3. Appropriate, including duration and frequency that is considered appropriate for the service, in terms of whether it is:
 - Furnished in accordance with accepted standards of medical practice for the diagnosis or treatment of the patient's condition or to improve the function of a malformed body member;
 - Furnished in a setting appropriate to the patient's medical needs and condition;
 - Ordered and furnished by qualified personnel;
 - One that meets, but does not exceed, the patient's medical need; and
 - At least as beneficial as an existing and available medically appropriate alternative.

*Routine costs of qualifying clinical trial services with dates of service on or after September 19, 2000 which meet the requirements of the Clinical Trials NCD are considered reasonable and necessary by Medicare. Providers should bill **Original Medicare** for covered services that are related to **clinical trials** that meet Medicare requirements (Refer to Medicare National Coverage Determinations Manual, Chapter 1, Section 310 and Medicare Claims Processing Manual Chapter 32, Sections 69.0-69.11).

POLICY:

Blue Advantage will treat **autologous chondrocyte implantation** as a **covered benefit** for the treatment of disabling full-thickness articular cartilage defects of the knee caused by acute or repetitive trauma, when all of the following criteria are met:

- The patient is skeletally mature with documented closure of growth plates and not considered an appropriate candidate for total knee arthroplasty or other reconstructive knee surgery (e.g., age greater than 15 and less than 55 years); AND
- Focal, full-thickness (grade III or IV) unipolar lesions of the patella or the weight-bearing surface of the femoral condyles or trochlea at least 1.5 cm² in size; AND
- Documented minimal to absent degenerative changes in the surrounding articular cartilage (Outerbridge grade II or less), and normal-appearing hyaline cartilage surrounding the border of the defect; AND
- Normal knee biomechanics or alignment and stability achieved concurrently with autologous chondrocyte implantation.

Blue Advantage will treat autologous chondrocyte implantation as a non-covered benefit and as investigational for all other joints, including talar, and any indications other than those listed above is therefore considered investigational.

Blue Advantage will treat prophylactic harvesting of cells during other reconstructive or reparative procedures for possible future implantation as a non-covered benefit and as investigational.

Blue Advantage does not approve or deny procedures, services, testing, or equipment for our members. Our decisions concern coverage only. The decision of whether or not to have a certain test, treatment or procedure is one made between the physician and his/her patient. Blue Advantage administers benefits based on the members' contract and medical policies. Physicians should always exercise their best medical judgment in providing the care they feel is most appropriate for their patients. Needed care should not be delayed or refused because of a coverage determination.

DESCRIPTION OF PROCEDURE OR SERVICE:

A variety of procedures are being developed to resurface articular cartilage defects. Autologous chondrocyte implantation (ACI) involves harvesting chondrocytes from healthy tissue, expanding the cells in vitro, and implanting the expanded cells into the chondral defect under a periosteal or fibrin patch. Second- and third- generation techniques include combinations of autologous chondrocytes, scaffolds, and growth factors. This procedure may be performed at the same time as other surgical procedures such as repair of tendons or ligaments, osteotomies for realignment of a joint, or meniscal allograft transplantation.

Damaged articular cartilage typically fails to heal on its own and can be associated with pain, loss of function, and disability, and may lead to debilitating osteoarthritis over time. These

Proprietary Information of Blue Cross and Blue Shield of Alabama An Independent Licensee of the Blue Cross and Blue Shield Association Blue Advantage Medical Policy #156 manifestations can severely impair an individual's activities of daily living and adversely affect the quality of life.

Conventional treatment options include debridement, subchondral drilling, microfracture, and abrasion arthroplasty. Debridement involves the removal of synovial membrane, osteophytes, loose articular debris, and diseased cartilage and is capable of producing symptomatic relief. Subchondral drilling, microfracture, and abrasion arthroplasty attempt to restore the articular surface by inducing the growth of fibrocartilage into the chondral defect. Compared with the original hyaline cartilage, fibrocartilage has less capability to withstand shock or shearing force and can degenerate over time, often resulting in the return of clinical symptoms. Osteochondral grafts and autologous chondrocyte implantation (ACI) attempt to regenerate hyaline-like cartilage and thereby restore durable function. Osteochondral grafts for the treatment of articular cartilage defects are discussed in Medical Policy #248, Autografts and Allografts in the Treatment of Focal Articular Cartilage Lesions.

With ACI, a region of healthy articular cartilage is identified and biopsied through arthroscopy. The tissue is sent to a facility licensed by the U.S. Food and Drug Administration (FDA) where it is minced and enzymatically digested, and the chondrocytes are separated by filtration. The isolated chondrocytes are cultured for 11 to 21 days to expand the cell population, tested, and then shipped back for implantation. With the patient under general anesthesia, an arthrotomy is performed, and the chondral lesion is excised up to the normal surrounding cartilage. Methods to improve the first-generation ACI procedure have been developed, including the use of a scaffold or matrix-induced autologous chondrocyte implantation (MACI) composed of biocompatible carbohydrates, protein polymers, or synthetics. The only FDA-approved MACI product to date is supplied in a sheet, which is cut to size and fixed with fibrin glue. This procedure is considered technically easier and less time consuming than the first-generation technique, which required suturing of a periosteal or collagen patch and injection of chondrocytes under the patch.

Desired features of articular cartilage repair procedures are the ability (1) to be implanted easily, (2) to reduce surgical morbidity, (3) not to require harvesting of other tissues, (4) to enhance cell proliferation and maturation, (5) to maintain the phenotype, and (6) to integrate with the surrounding articular tissue. In addition to the potential to improve the formation and distribution of hyaline cartilage, use of a scaffold with MACI eliminates the need for harvesting and suture of a periosteal or collagen patch. A scaffold without cells may also support chondrocyte growth.

KEY POINTS:

The most recent literature update was performed through February 16, 2023.

Summary of Evidence

For individuals who have focal articular cartilage lesion(s) of the weight-bearing surface of the femoral condyles, trochlea, or patella who receive ACI, the evidence includes systematic reviews, randomized controlled trials, and observational studies. Relevant outcomes are symptoms, change in disease status, morbid events, functional outcomes, and quality of life. There is a large body of evidence on ACI for the treatment of focal articular cartilage lesions of

the knee. For large lesions, ACI results in better outcomes than microfracture, particularly in the long term. In addition, there is a limit to the size of lesions that can be treated with osteochondral autograft transfer, due to a limit on the number of osteochondral cores that can be safely harvested. As a result, ACI has become the established treatment for large articular cartilage lesions in the knee. In 2017, first-generation ACI with a collagen cover was phased out and replaced with an ACI preparation that seeds the chondrocytes onto a bioresorbable collagen sponge. Although the implantation procedure for this second-generation ACI is less technically demanding, studies to date have not shown improved outcomes compared with first-generation ACI. Some evidence has suggested an increase in hypertrophy (overgrowth) of the new implant that may exceed that of the collagen membrane covered implant. Long-term studies with a larger number of patients will be needed to determine whether this hypertrophy impacts graft survival. Based on mid-term outcomes that approximate those of first-generation ACI and the lack of alternatives, secondgeneration ACI may be considered an option for large disabling full-thickness cartilage lesions of the knee. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have focal articular cartilage lesions of joints other than the knee who receive autologous chondrocyte implantation, the evidence includes case series, systematic reviews of case series, and a network meta-analysis of prospective(none of which evaluated autologous chondrocyte implantation) and retrospective studies. Relevant outcomes are symptoms, change in disease status, morbid events, functional outcomes, and quality of life. The greatest amount of literature is for ACI of the talus. Comparative trials are needed to determine whether ACI improves outcomes for lesions in joints other than the knee. The evidence is insufficient to determine the effects of the technology on health outcomes.

Practice Guidelines and Position Statements American Academy of Orthopaedic Surgeons

In its 2010 guidelines on the diagnosis and treatment of osteochondritis dissecans (OCD), the American Academy of Orthopaedic Surgeons (AAOS) was unable to recommend for or against a specific cartilage repair technique in symptomatic skeletally immature or mature patients with an unsalvageable osteochondritis dissecans lesion. This recommendation of insufficient evidence was based on a systematic review that found four level IV studies that addressed cartilage repair techniques for an unsalvageable OCD lesion. Since each of the level IV articles utilized different techniques, different outcome measures, and differing lengths of follow-up, the work group deemed that the evidence for any specific technique was inconclusive.

National Institute for Health and Clinical Excellence

In 2018, the National Institute for Health and Care Excellence updated its 2005 guidance on the use of autologous chondrocyte implantation. The NICE recommendations are stated below:

"... as an option for treating symptomatic articular cartilage defects of the femoral condyle and patella of the knee (International Cartilage Repair Society grade III or IV) in adults, only if:

• the person has not had previous surgery to repair articular cartilage defects;

- there is minimal osteoarthritic damage to the knee (as assessed by clinicians experienced in investigating knee cartilage damage using a validated measure for knee osteoarthritis); and
- the defect is over 2 cm²."

U.S. Preventive Services Task Force Recommendations

Not applicable.

KEY WORDS:

Autologous chondrocyte transplantation (ACT), autologous chondrocyte implant (ACI), articular cartilage, chondrocytes, Carticel[®], osteochrondritis dissecans (OCD), ChondroCelect, BioCart II, Cartilix, MACI[®], Cartipatch, NeoCart, Hyalograft C

APPROVED BY GOVERNING BODIES:

The culturing of chondrocytes is considered by the U.S. Food and Drug Administration (FDA) to fall into the category of manipulated autologous structural (MAS) cells, which are subject to a biologic licensing requirement. In 1997, Carticel received FDA approval for the repair of clinically significant, "...symptomatic cartilaginous defects of the femoral condyle (medial lateral or trochlear) caused by acute or repetitive trauma...."

In 2016, MACI[®] (matrix-induced autologous chondrocyte implantation [ACI]; Vericel), received FDA approval for the repair of symptomatic, full-thickness cartilage defects of the knee in adult patients. MACI[®] consists of autologous chondrocytes which are cultured onto a bio-resorbable porcine-derived collagen membrane. In 2017, production of Carticel was phased out and MACI[®] is the only ACI product that is available in the U.S.

A number of other second-generation methods for implanting autologous chondrocytes in a biodegradable matrix are currently in development or testing or are available outside of the United States. They include Atelocollagen (Koken), a collagen gel; Bioseed[®] C (BioTissue Technologies), a polymer scaffold; CaReS (Ars Arthro), collagen gel; Cartilix (Biomet), a polymer hydrogel; Chondron (Sewon Cellontech), a fibrin gel; Hyalograft C (Fidia Advanced Polymers), a hyaluronic acid-based scaffold; NeoCart (Histogenics), an ACI with a 3dimensional chondromatrix in a phase 3 trial; and Novocart®3D (Aesculap Biologics), a collagenchondroitin sulfate scaffold in a phase 3 trial. ChondroCelect[®] (TiGenix), characterized as a chondrocyte implantation with a completed phase 3 trial, uses a gene marker profile to determine in vivo cartilage-forming potential and thereby optimizes the phenotype (e.g., hyaline cartilage vs fibrocartilage) of the tissue produced with each ACI cell batch. Each batch of chondrocytes is graded based on the quantitative gene expression of a selection of positive and negative markers for hyaline cartilage formation. Both Hyalograft C and ChondroCelect[®] have been withdrawn from the market in Europe. In 2020, the FDA granted breakthrough status to Agili-C (CartiHeal, Ltd.), a proprietary cell-free biocompatible and biodegradable tapered-shape implant for the treatment of cartilage lesions in arthritic and non-arthritic joints that, when implanted into a pre-prepared osteochondral hole, acts as a 3D scaffold that potentially supports

and promotes the regeneration of the articular cartilage and its underlying subchondral bone. Agili-C was FDA-approved in 2021 for treatment of knee-joint surface lesions with a treatable area of 1 to 7 cm² without severe osteoarthritis.

BENEFIT APPLICATION:

Coverage is subject to member's specific benefits. Group specific policy will supersede this policy when applicable.

CURRENT CODING:

CPT codes: 27412 Autologous chondrocyte implantation, knee 27899 Unlisted procedure, leg or ankle 29870 Code range, arthroscopy of the knee

HCPCS:

J7330	Autologous cultured chondrocytes, implant
S2112	Arthroscopy, knee, surgical for harvesting of cartilage (chondrocyte cells)

REFERENCES:

- 1. Abane L, Anract P, Boisgard S, et al. A comparison of patient-specific and conventional instrumentation for total knee arthroplasty: a multicentre randomised controlled trial. Bone Joint J. Jan 2015; 97-B(1): 56-63.
- 2. Abane L, Zaoui A, Anract P, et al. Can a Single-Use and Patient-Specific Instrumentation Be Reliably Used in Primary Total Knee Arthroplasty? A Multicenter Controlled Study. J Arthroplasty. Jul 2018; 33(7): 2111-2118.
- 3. Abdel MP, Parratte S, Blanc G, et al. No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res. Aug 2014; 472(8): 2468-76.
- 4. Alvand A, Khan T, Jenkins C, et al. The impact of patient-specific instrumentation on unicompartmental knee arthroplasty: a prospective randomised controlled study. Knee Surg Sports Traumatol Arthrosc. Aug 22 2017.

- 5. American Academy of Orthopaedic Surgeons Surgical Management of Osteoarthritis of the Knee Evidence-Based Clinical Practice Guideline. www.aaos.org/smoak2cpg Published December 02, 2022.
- 6. Anderl W, Pauzenberger L, Kolblinger R, et al. Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc. Jan 2016; 24(1): 102-11.
- 7. Bali K, Walker P, Bruce W. Custom-fit total knee arthroplasty: our initial experience in 32 knees. J Arthroplasty. Jun 2012; 27(6): 1149-54.
- 8. Barke S, Musanhu E, Busch C, et al. Patient-matched total knee arthroplasty: does it offer any clinical advantages?. Acta Orthop Belg. Jun 2013; 79(3): 307-11.
- 9. Barrack RL, Ruh EL, Williams BM, et al. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br. Nov 2012; 94(11 Suppl A): 95-9.
- 10. Barrett W, Hoeffel D, Dalury D, et al. In-vivo alignment comparing patient specific instrumentation with both conventional and computer assisted surgery (CAS) instrumentation in total knee arthroplasty. J Arthroplasty. Feb 2014; 29(2): 343-7.
- 11. Boonen B, Schotanus MG, Kerens B, et al. No difference in clinical outcome between patient-matched positioning guides and conventional instrumented total knee arthroplasty two years post-operatively: a multicentre, double-blind, randomised controlled trial. Bone Joint J. Jul 2016; 98-B(7):939-944.
- 12. Boonen B, Schotanus MG, Kerens B, et al. Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc. Oct 2013; 21(10): 2206-12.
- 13. Boonen B, Schotanus MG, Kort NP. Preliminary experience with the patient-specific templating total knee arthroplasty. Acta Orthop. Aug 2012; 83(4): 387-93.
- 14. Calliess T, Bauer K, Stukenborg-Colsman C, et al. PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc. Jun 2017; 25(6):1743-1748.
- 15. Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patientspecific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. Mar 2013; 95-B(3): 354-9.
- Chen JY, Chin PL, Tay DK, et al. Functional Outcome and Quality of Life after Patient-Specific Instrumentation in Total Knee Arthroplasty. J Arthroplasty. Oct 2015; 30(10): 1724-8.
- 17. Chen JY, Yeo SJ, Yew AK, et al. The radiological outcomes of patient-specific instrumentation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. Mar 2014; 22(3): 630-5.
- 18. Chotanaphuti T, Wangwittayakul V, Khuangsirikul S, et al. The accuracy of component alignment in custom cutting blocks compared with conventional total knee arthroplasty instrumentation: prospective control trial. Knee. Jan 2014; 21(1): 185-8.

- Cucchi D, Menon A, Zanini B, et al. Patient-Specific Instrumentation Affects Perioperative Blood Loss in Total Knee Arthroplasty. J Knee Surg. Jun 2019; 32(6): 483-489.
- 20. Daniilidis K, Tibesku CO. A comparison of conventional and patient-specific instruments in total knee arthroplasty. Int Orthop. Mar 2014; 38(3): 503-8.
- 21. De Vloo R, Pellikaan P, Dhollander A, et al. Three-dimensional analysis of accuracy of component positioning in total knee arthroplasty with patient specific and conventional instruments: A randomized controlled trial. Knee. Dec 2017; 24(6): 1469-1477.
- 22. DeHaan AM, Adams JR, DeHart ML, et al. Patient-specific versus conventional instrumentation for total knee arthroplasty: perioperative and cost differences. J Arthroplasty. Nov 2014; 29(11): 2065-9.
- Ferrara F, Cipriani A, Magarelli N, et al. Implant positioning in TKA: comparison between conventional and patient-specific instrumentation. Orthopedics. Apr 2015; 38(4): e271-80.
- 24. Gan Y, Ding J, Xu Y, et al. Accuracy and efficacy of osteotomy in total knee arthroplasty with patient-specific navigational template. Int J Clin Exp Med. 2015; 8(8): 12192-201.
- 25. Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. Apr 2019; 27(4): 1083- 1095.
- Hamilton WG, Parks NL, Saxena A. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. Sep 2013; 28(8 Suppl): 96-100.
- 27. Hampton MJ, Blakey CM, Anderson AA, et al. Minimum 5-Year Outcomes of a Multicenter, Prospective, Randomized Control Trial Assessing Clinical and Radiological Outcomes of Patient-Specific Instrumentation in Total Knee Arthroplasty. J Arthroplasty. Jan 22 2022.
- 28. Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patientspecific instrumentation. Knee. Jan 2014; 21(1): 268-71.
- 29. Huijbregts HJ, Khan RJ, Fick DP, et al. Component alignment and clinical outcome following total knee arthroplasty: a randomised controlled trial comparing an intramedullary alignment system with patient-specific instrumentation. Bone Joint J. Aug 2016; 98-B(8): 1043-9.
- 30. IOM (Institute of Medicine). 2011. Clinical Practice Guidelines We Can Trust. Washington, DC: The National Academies Press.
- Kassab S, Pietrzak WS. Patient-specific positioning guides versus manual instrumentation for total knee arthroplasty: an intraoperative comparison. J Surg Orthop Adv. 2014; 23(3): 140-6.
- 32. Khuangsirikul S, Lertcharoenchoke T, Chotanaphuti T. Rotational alignment of femoral component between custom cutting block and conventional technique in total knee arthroplasty. J Med Assoc Thai. Feb 2014; 97 Suppl 2: S47-51.

- 33. Kosse NM, Heesterbeek PJC, Schimmel JJP, et al. Stability and alignment do not improve by using patient-specific instrumentation in total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. Nov 28 2017.
- Kotela A, Kotela I. Patient-specific computed tomography based instrumentation in total knee arthroplasty: a prospective randomized controlled study. Int Orthop. Oct 2014; 38(10): 2099-107.
- 35. Kotela A, Lorkowski J, Kucharzewski M, et al. Patient-Specific CT-Based Instrumentation versus Conventional Instrumentation in Total Knee Arthroplasty: A Prospective Randomized Controlled Study on Clinical Outcomes and In-Hospital Data. Biomed Res Int. 2015; 2015: 165908.
- 36. Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. Apr 2007; 89(4):780-785.
- 37. Lin Y, Cai W, Xu B, et al. Patient-Specific or Conventional Instrumentations: A Metaanalysis of Randomized Controlled Trials. Biomed Res Int. 2020; 2020: 2164371.
- MacDessi SJ, Jang B, Harris IA, et al. A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty. Knee. Mar 2014; 21(2): 406-9.
- 39. Mannan A, Akinyooye D, Hossain F. A meta-analysis of functional outcomes in patientspecific instrumented knee arthroplasty. J Knee Surg. Sep 2017; 30(7):668-674.
- 40. Mannan A, Smith TO. Favourable rotational alignment outcomes in PSI knee arthroplasty: A Level 1 systematic review and meta-analysis. Knee. Mar 2016; 23(2):186-190.
- 41. Marimuthu K, Chen DB, Harris IA, et al. A multi-planar CT-based comparative analysis of patient-specific cutting guides with conventional instrumentation in total knee arthroplasty. J Arthroplasty. Jun 2014; 29(6): 1138-42.
- 42. Maus U, Marques CJ, Scheunemann D, et al. No improvement in reducing outliers in coronal axis alignment with patient-specific instrumentation. Knee Surg Sports Traumatol Arthrosc. Oct 25 2017.
- 43. McGrory BJ, Weber KL, Jevsevar DS, et al. Surgical Management of Osteoarthritis of the Knee: Evidence-based Guideline. J Am Acad Orthop Surg. Aug 2016; 24(8): e87-93.
- 44. Molicnik A, Naranda J, Dolinar D. Patient-matched instruments versus standard instrumentation in total knee arthroplasty: a prospective randomized study. Wien Klin Wochenschr. Dec 2015; 127 Suppl 5: S235-40.
- 45. Nabavi A, Olwill CM. Early outcome after total knee replacement using computed tomography-based patient-specific cutting blocks versus standard instrumentation. J Orthop Surg (Hong Kong). Aug 2015; 23(2): 182-4. PMID
- 46. Nam D, Park A, Stambough JB, et al. The Mark Coventry Award: Custom Cutting Guides Do Not Improve Total Knee Arthroplasty Clinical Outcomes at 2 Years Followup. Clin Orthop Relat Res. Jan 2016; 474(1): 40-6.
- 47. Nankivell M, West G, Pourgiezis N. Operative efficiency and accuracy of patient-specific cutting guides in total knee replacement. ANZ J Surg. Jun 2015; 85(6): 452-5.

- 48. Ng VY, DeClaire JH, Berend KR, et al. Improved accuracy of alignment with patientspecific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. Jan 2012; 470(1): 99-107.
- 49. Noble JW, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. Jan 2012; 27(1): 153-5.
- 50. Nunley RM, Ellison BS, Ruh EL, et al. Are patient-specific cutting blocks cost-effective for total knee arthroplasty?. Clin Orthop Relat Res. Mar 2012; 470(3): 889-94.
- 51. Parratte S, Blanc G, Boussemart T, et al. Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc. Oct 2013; 21(10): 2213-9.
- 52. Pfitzner T, Abdel MP, von Roth P, et al. Small improvements in mechanical axis alignment achieved with MRI versus CT-based patient-specific instruments in TKA: a randomized clinical trial. Clin Orthop Relat Res. Oct 2014; 472(10): 2913-22.
- 53. Pietsch M, Djahani O, Zweiger Ch, et al. Custom-fit minimally invasive total knee arthroplasty: effect on blood loss and early clinical outcomes. Knee Surg Sports Traumatol Arthrosc. Oct 2013; 21(10): 2234-40.
- Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. Dec 2014; 21(6): 1216-20.
- 55. Roh YW, Kim TW, Lee S, et al. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res. Dec 2013; 471(12): 3988-95.
- 56. Schotanus MGM, Boonen B, van der Weegen W, et al. No difference in mid-term survival and clinical outcome between patientspecific and conventional instrumented total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. May 2019; 27(5): 1463-1468.
- 57. Silva A, Sampaio R, Pinto E. Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc. Mar 2014; 22(3): 636-42.
- Stronach BM, Pelt CE, Erickson JA, et al. Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J Arthroplasty. Sep 2014; 29(9): 1705-8.
- 59. Tammachote, NN, Panichkul, PP, Kanitnate, SS. Comparison of Customized Cutting Block and Conventional Cutting Instrument in Total Knee Arthroplasty: A Randomized Controlled Trial. J Arthroplasty, 2017 Nov 8;33(3).
- 60. Thienpont E, Grosu I, Paternostre F, et al. The use of patient-specific instruments does not reduce blood loss during minimally invasive total knee arthroplasty?. Knee Surg Sports Traumatol Arthrosc. Jul 2015; 23(7): 2055-60.
- 61. Thienpont E, Schwab PE, Fennema P. Efficacy of patient-specific instruments in total knee arthroplasty: a systematic review and meta-analysis. J Bone Joint Surg Am. Mar 15 2017; 99(6):521-530.

- 62. Van Leeuwen J, Snorrason F, Rohrl SM. No radiological and clinical advantages with patient-specific positioning guides in total knee replacement. Acta Orthop. Feb 2018; 89(1):89-94.
- 63. Victor J, Dujardin J, Vandenneucker H, et al. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. Jan 2014; 472(1): 263-71.
- 64. Vide J, Freitas TP, Ramos A, et al. Patient-specific instrumentation in total knee arthroplasty: simpler, faster and more accurate than standard instrumentation-a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. Aug 2017; 25(8): 2616-2621
- 65. Vundelinckx BJ, Bruckers L, De Mulder K, et al. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. Jun 2013; 28(6): 964-70.
- 66. Woolson ST, Harris AH, Wagner DW, et al. Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am. Mar 05 2014; 96(5): 366-72.
- 67. Yaffe M, Luo M, Goyal N, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patientspecific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg. Sep 2014; 9(5): 837-44.
- 68. Yan CH, Chiu KY, Ng FY, et al. Comparison between patient-specific instruments and conventional instruments and computer navigation in total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. Dec 2015; 23(12): 3637-45.
- Zhu M, Chen JY, Chong HC, et al. Outcomes following total knee arthroplasty with CTbased patient-specific instrumentation. Knee Surg Sports Traumatol Arthrosc. Aug 2017; 25(8): 2567-2572.

POLICY HISTORY:

Adopted for Blue Advantage, March 2005 Available for comment May 1-June 14, 2005 Medical Policy Group, May 2007 Available for comment May 8-June 21, 2007 Medical Policy Group, December 2009 Available for comment December 4, 2009-January 19, 2010 Medical Policy Group, March 2010 Available for comment April 15-May 29, 2010 Medical Policy Group, June 2011 Available for comment July 6 through August 22, 2011 Medical Policy Group, June 2012 Medical Policy Group, June 2013

> Proprietary Information of Blue Cross and Blue Shield of Alabama An Independent Licensee of the Blue Cross and Blue Shield Association Blue Advantage Medical Policy #156

Available for comment June 27 through August 10, 2013 Medical Policy Group, September 2013 Medical Policy Group, June 2014 Medical Policy Group, June 2015 Medical Policy Group, October 2015 Available for comment October 29 through December 13, 2015 Medical Policy Group, April 2017 Available for comment April 26 through June 10, 2017 Medical Policy Group, December 2017 Medical Policy Group, April 2020: Reinstated policy effective March 24, 2020. Medical Policy Group, April 2021 Medical Policy Group, April 2022 Medical Policy Group, April 2022 Medical Policy Group, April 2023

This medical policy is not an authorization, certification, explanation of benefits, or a contract. Eligibility and benefits are determined on a case-by-case basis according to the terms of the member's plan in effect as of the date services are rendered. All medical policies are based on (i) research of current medical literature and (ii) review of common medical practices in the treatment and diagnosis of disease as of the date hereof. Physicians and other providers are solely responsible for all aspects of medical care and treatment, including the type, quality, and levels of care and treatment.

This policy is intended to be used for adjudication of claims (including pre-admission certification, predeterminations, and pre-procedure review) in Blue Cross and Blue Shield's administration of plan contracts.